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Abstract. Registration of histology whole slide images of consecutive
sections of a tissue block is mandatory for cross-slide analysis. Due to
the stain variations, a feature-based method for deriving the transfor-
mation maps for these images is considered to be a reasonable choice
as compared to the methods which work on image intensities. Autoen-
coders have been employed in a wide variety of applications due to their
potential for representation learning and transfer learning for deep ar-
chitectures. Representation learned by autoencoders has been used for a
number of challenging problems including classification and regression.
In this study, we analyze deep autoencoder features for the purpose of
registering histology images by maximizing the feature similarities be-
tween the fixed and moving images. In this paper, we demonstrate the
capability of autoencoder features for registration of histology images.
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1 Introduction

With the advent of digital scanners, the pathologist’s practice for diagnosis is
transforming from visual microscopic analysis to digitized tissue analysis. In
diagnostic and research practice, cross-slide image analysis provides additional
information by analyzing expression of different biomarkers as compared to a
single slide image analysis. Slides stained with different biomarkers are analyzed
side by side which can essentially provide some unknown relations between the
different biomarkers. During the slide preparation, a tissue section may be placed
at an arbitrary orientation as compared to other sections of the same tissue
block. The problem is compounded by the facts that tissue contents are likely
to change from one section to the next and there may be unique artefacts on
some of the slides. This makes registration of each section with respect to a
reference section of the same tissue block a mandatory task prior to any cross-
slide analysis. Currently, this registration is done manually by the pathologists
which is time-consuming due to the large number of sections taken from a single
tissue block.
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There are three main methods for image registration: control point regis-
tration, intensity based registration and feature-based registration [1] where the
first method requires user input while the later two are fully automated methods.
Handcrafted feature-based methods generally consist of four steps: 1) detection
of salient features, 2) calculating descriptors from pixels around the detected
features, 3) finding matching descriptors between the two images, 4) finding
the transformation, mapping the matched features of a moving image with the
corresponding features of a reference image. Registration based on matching
hand-crafted features are not likely to perform well for all the image data. This
limitation can be overcome by learning the latent feature representation from the
data itself. Convolutional neural networks (CNNs) have been extensively used
for various applications for learning the base functions from the data. These
functions learn both low and high dimensional features from the data and are
optimized by comparing the output with the ground truth for any particular
task at hand. The only limitation in using CNN for medical applications is the
availability of ground truth information. Unsupervised methods do not require
ground truth data for feature extraction but their capability of learning com-
plex representations depends on the type of method used. Linear unsupervised
models such as PCA and ICA may not be suitable for a complex data repre-
sentation since they are not able to learn the complex non-linear relationship
upon reducing the dimensionality of the data. While autoencoder (AE), a deep
unsupervised learning model, has the ability to learn the complex representation
without using any ground truth information for feature learning and are more
likely to perform better as compared to the handcrafted features. Recently, AEs
have been used for a variety of tasks including transfer learning and getting
the learned features and feeding them to separate model for a more challenging
problems of classification and regression.

In this paper, we present a histology image registration framework based on
unsupervised deep AE features. The motivation behind selection of AE for deep
feature extraction is the fact that these networks do not require any ground
truth for training. Our contribution in this paper is two-fold: 1) we propose to
use convolutional AEs for learning features from the histology images which to
the best of our knowledge have not been explored for histology image registra-
tion task, 2) we then perform registration by maximizing the mutual information
between the learned features of the two images instead of using the images inten-
sities. The AE learns the complex pattern among the training set for registration
which have been shown to be useful for other complex tasks. Additionally, our
adopted AE reduces the dimensionality by a factor of 16 which makes our pro-
posed method fast making it tractable for its adoption for whole slide images
(WSIs).

2 Previous Studies

There are many studies on medical image registration using intensity-based and
feature-based methods including, both supervised and unsupervised learning.
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Among intensity-based methods, mutual information has been widely used for
medical images including pathology images [2, 3]. This method works by finding
a transformation which maximises the mutual information between the two im-
ages in terms of pixel intensities. This criteria makes it less efficient for serial
sections which are stained with different biomarkers since the tissue regions will
be represented with different colors based on the type of biomarker used. This
method would also be very time-consuming due to the large size of WSIs. Edge
based registration methods are computationally very less expensive than the
registration methods which are based on pixel intensities. Hierarchical Chamfer
matching and registration based on curvature scale space (CSS) representation of
the boundary points are the common examples of edge based registration. These
methods are fast since the transformation is estimated based on the boundary
point rather than the pixel intensities. In [4], Trahearn et al. employed curvature
scale space (CSS) representation of the tissue boundaries for WSI registration.
In another study [5], authors have used CSS based method for pre-alignment
of serial sections stained with different biomarkers. The results of pre-alignment
are further improved based on the nuclei clusters and fatty regions since these
tissue structures are more likely to exist across several serial sections.

In [6], Mueller et al. demonstrated the feasibility of non-rigid spline-based
registration for WSIs. The authors employed it for the alignment of serial tis-
sue section WSIs with different staining characteristics such as tissues sections
stained with immunohistochemical (IHC) biomarkers and haematoxylin and
eosin (H&E) stain. Their proposed approach follows two-step multi-scale strat-
egy to perform the transformation within a reasonable time constraint. In first
stage, initial transformation map is estimated using a publicly available tool for
registration, known as elastix. While in the second stage, the initial transfor-
mation is applied on the high resolution regions of WSI rather than the whole
WSI. In another study [7], authors proposed a method for multi-stain and multi-
modal WSI registration, with the goal of 3D reconstruction. In this method,
mutual information based strategy is used to construct the 3-dimensional stack
of multi-stain and mulit-modal 2-dimensional images.

Different unsupervised feature learning methods have been used in previous
studies for image registration. In [8], a stacked convolutional independent sub-
space analysis (ISA) network was proposed for extracting the features to be fed
to the existing registration tool for deformable alignment of the MR images. In
another study [9], the authors followed the same framework except that they
replaced the ISA features with those learned using a sparse convolutional AE.

3 Materials and Methods

3.1 Experimental Dataset

In this study, all the experiments were conducted on a publicly available dataset [10].
This dataset comprises of 400 images of size 2048×1536 pixels captured at 20×
magnification level with the pixel resolution of 0.42 µm. We split the dataset
into training and validation sets, consisting of 249 and 151 images respectively.
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This data split was used for AE training and to evaluate the registration, same
validation set was used.

3.2 Deep Convolutional Autoencoders

A typical vanilla AE is structured to form three layers: an input layer, a dense
hidden layer and an output layer. On giving an input image xn, reshaped into
a vector, to this AE, the hidden layer would map this image to vector hn using
an activation function, given as:

hn = f(xn) = f(Wxn + b1) (1)

where f(.), W and b1 represents the activation function, weight matrix and
bias vector respectively. The output of this activation function is then given to
another mapping function yn = f(hn) = f(Whn+b2) which would map the hn to
a vector approximately equivalent to the input image vector xn. The goal of the
AE is to learn the feature representation by generating an output approximately
equivalent to the input by using the following function:

W, b1, b2 = argmin
W,b1,b2

N∑

n=1

||f(WT (f(Wxn + b1)) + b2)− xn||22 (2)

where N represents the number of images. This type of AE learns feature rep-
resentation from the input images without considering the spatial information
which carries significant information and is also limited due to its shallow nature.
These limitations can be avoided by adopting a sliding window based convolu-
tional AE and by adding more hidden layers to the network. In a convolutional
AE, the network is designed to form the U-shaped architecture, consisting of
an encoder and a decoder. The encoder part consists of a number of convolu-
tions, each followed by an activation function (ReLU) and a max-pooling layer.
The decoder part also follows the same structure except that the max-pooling
layer is replaced with the deconvolution layer. Here, in this study, the goal of
AE is to extract features from the histology images which can be used for the
registration purpose. For our experiments, we employed convolutional AE with
three convolutional layers in both encoder and decoder part of the network. The
network architecture of our AE is shown in Figure 1. For training, RGB patches
of size 128×128 were used. During training, sparsity constraint was imposed on
the last convolutional layer of the encoder and the features were extracted from
the max-pooling layer right after this sparsity imposed convolutional layer. Rm-
sprop was used to optimize the objective function, with a batch size of 50 input
images. Network training was carried out using a system with dual core i5-7500
CPU (3.40 GHz), NVIDIA GeForce GTX 1050 Ti and 32 GB RAM.

3.3 Registration

We posed registration as an optimization problem where the goal is to find a
spatial transformation which gives the best correspondence between the two

4 MIUA2018, 055, v3 (final): ’Deep Autoencoder Features for Registration of Histology Images’



Histology Image Registration 5

Fig. 1. Architecture of the AE used in this study where each block represents a layer.
Each number mentioned above each block indicates the number of feature maps while
the number listed below the block indicates the spatial resolution of the output of each
layer/block.

images. This optimization problem is solved by using gradient descent. For reg-
istration, we use feature values of the images for finding the best transformation
which aligns the moving image with respect to the reference image such that
the mutual information between the features of two images is maximum. Among
intensity-based methods, the use of mutual information has been widely used
where the mutual information is computed for image intensities. One of the lim-
itations of using this method when used with the image intensities is that it is
often very time-consuming and computational expensive. Here, we adopt this
method by replacing the intensity values of the images with deep AE features
extracted from the images.

4 Experimental Results

In this section, we evaluate the efficacy of learned features by estimating the
transformation of moving images using deep AE features. Figure 2 shows one
feature map per image along with the reconstructed image generated by the
AE. Since the network was trained on input patch of size 128×128 pixels, these
feature maps and reconstructed images were generated by merging the output
of small patches. Recall that we used 151 images for evaluating our proposed
method. For each of these images, eleven rotated versions of the original image
were generated. Features were extracted for the test set images (151) and their
rotated versions (1661) using the trained AE. These features were then fed to the
registration method based on mutual information. For comparison purpose, we
also performed registration based on image intensities and compared its results
with our results using root mean square error (RMSE) rate. RMSE is calculated
between the ground truth angle and the angle predicted after registration and
is formulated as:
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RMSE =

√√√√1/n
n∑

j=1

(yj − ŷj)2 (3)

where yj and ŷj represents ground truth angle and the predicted angle for
all the test images. n = 1661 which represents the number of test images. The
RMSE is calculated for angles in degrees. We found that the features learned
are not only performing better in terms of mean square error rate but also
outperform the intensity-based registration with a significant margin in terms of
computational time. Table 1 gives results for both feature-based and intensity-
based registration. For feature-based registration, the spatial correspondence of
75% of the moving images was exactly matched with the reference images while
in the case of intensity-based method, only 55.75% of the moving images were
exactly matched with their corresponding reference images. Figure 3 shows some
good and bad examples of registered images along with the reference and moving
images.

Fig. 2. Feature maps and reconstructed images generated by our trained AE. First,
second and third rows show few examples of original images and their corresponding
(one of the) feature maps and the reconstructed images respectively. The feature maps
and reconstructed images are obtained by merging the output of small patches of size
128×128 pixels.
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Fig. 3. Example image to show the visual results of some good and bad registration.
(a) and (d) show reference images. (b) and (e) show moving images while (c) and (f)
show registered moving images.

5 Conclusions

In this study, we have explored the efficacy of features learned in an unsupervised
manner for the task of histology image registration. In particular, sparse convolu-
tional AE is designed to extract high level features for this purpose. Using these
features as an input to a registration method, we achieved promising accuracy
in comparison to using intensity-based registration. In addition, the computa-
tional time is significantly lowered by factor of 16 which makes it encouraging
for us to use these features for the WSI registration. The continuation of this
study would comprise of WSI registration and evaluation of other unsupervised
nonlinear models for learning better feature representation.

Method RMSE Computational Time (min)

Original Image Intensities 147.42 124.95

Autoencoder Features 104.86 3.05

Table 1. Root mean square error (RMSE) and times required for registration for the
whole test set of 151 images. RMSE is calculated between the ground truth angle
and the angle predicted by the registration method. The computational time for AE
features includes both feature extraction and registration time. Feature extraction and
registration for 151 images took 2.53 and 0.52 minutes respectively.
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