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Abstract. Identifying lung adenocarcinoma growth patterns is critical
for diagnosis and treatment of lung cancer patients. Growth patterns
have variable texture, shape, size and location. They could appear in-
dividually or fused together in a way that makes it difficult to avoid
inter/intra variability in pathologists reports. Thus, employing a ma-
chine learning method to learn these patterns and automatically locate
them within the tumour is indeed necessary. This will reduce the effort,
assessment variability and provide a second opinion to support patholo-
gies decision. To the best of our knowledge, no work has been done
to classify growth patterns in lung adenocarcinoma. In this paper, we
propose applying deep learning framework to perform lung adenocarci-
noma pattern classification. We investigate what contextual information
is adequate for training using patches extracted at several resolutions.
We find that both cellular and architectural morphology features are
required to achieve the best performance. Therefore, we propose using
multi-resolution deep CNN for growth pattern classification in lung ade-
nocarcinoma. Our preliminarily results show an increase in the overall
classification accuracy.
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1 Introduction

Lung adenocarcinoma is one of the most common types of cancer in the world.
The main characteristic that makes it distinguishable form the other types of
non-small cell lung cancers is the presence of specific tumour morphology pat-
terns [4, 5]. These patterns are called growth patterns or adenocarcinoma his-
tology subtypes. In 2011, a new lung adenocarcinoma classification system was
proposed by a joint group of IASLC/ATS/ERS [5]. The classification system
proposes using the predominant growth pattern for prognosis purposes.

According to the latest 2015 WHO of lung tumour [9], lung adenocarcinoma
has five growth patterns: acinar, papillary, micro-papillary, solid and lepidic.

MIUA2018, 053, v4 (final): ’Multi-Resolution CNN for Lung Growth Pattern Classification’ 1



2 Najah Alsubaie et al.

Figure 2 shows examples of theses patterns. Acinar pattern is identified by a
glandular formation. The columnar shape tumour cells form acini and tubules.
Solid tumour is identified as a sheet and nests of tumour cells. Lepidic pattern
is composed of neoplastic cells growing along the alveolar walls. It often has no
architectural complexity and does not contain stromal, vascular or lymphatic
invasion. Papillary is identified by the presence of a papillary structure with
fibrovascular cores that replace the alveolar. At least one blood vessel should
present within papillary structure, psmmoma bodies might present as well. The
micropapillary pattern has smaller papillae. It has no fibrovascular cores or blood
vessels. Several studies show that these patterns are correlated with patient
survival [13, 11]. They show that solid [6, 3] and micro-papillary have the worst
prognosis [4]. These studies agree that micro-papillary is an independent factor
for overall survival, while lepidic predominant cases have good survival [8].

Adenocarcinoma tumour could contain one or more of these patterns in the
same biopsy. The clinical routine for identifying the presence of these patterns is
normally by visual examination of the tumour under microscope. Growth pattern
is identified by presence of the percentage of each subtype in 5% increment
[10]. The predominant pattern is then assigned to the case. The examination
process is tedious and often leads to inter/intra variability [7, 12]. This is due to
the difficulty of identifying one type from another and the localisation of these
patterns when they are mixed in one tumour region. Therefore, an automatic
subtype classification is important to provide an objective assessment that could
support pathologists decision and provide a second opinion.

In this paper, we propose a deep learning based framework that mimics the
pathologists clinical routine in growth pattern assessment. Our method iden-
tifies all possible patterns by examining the tissue at several resolutions. We
evaluate the performance of each network individually. We find that cellular and
morphological architecture are both useful for network to learn these patterns.
Thus, we propose a multi-resolution deep CNN where we train our network using
images from different resolutions to improve the overall accuracy. We measure
the pattern classification accuracy based on the pathologist annotations and the
preliminary results are promising. The remaining of the paper is organised as
follows: Section 2 describes the proposed method. Section 3 gives the experimen-
tal settings and discusses preliminary results. Finally, Section 4 summarises the
findings and suggests future directions.

2 Methodology

Pathologists look into the tissue under the microscope at several magnifications
by zooming in and out until they could recognise what pattern they are look-
ing at. They zoom into high magnification to examine cellular features, then
gradually move to lower magnifications to identify regional morphology.

In deep learning, a similar approach is performed. Each layer calculates im-
age features at one resolution. Next layer, more abstract features are calculated.
However, in deep learning the context is limited to the provided image. There-
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Fig. 1. Algorithm flowchart. A) A neural network is trained independently on dataset
extracted at four different resolution. We then evaluate the accuracy of each network
which indicates which context is adequate for training. B) Network is trained using
image resolutions that provide highest performance in A.

fore, a question that we would like to answer in this paper is as follows: Can
deep learning framework exploit patterns from more than one resolutions? Given
training images from different resolutions, how this could affect the performance
of deep learning network. In the following sections, we present a framework to
answer above questions.

2.1 The Datasets

In these experiments we used lung adenocarcinoma images from the MICCAI
2017 CPM Challenge1. The dataset contains a total number of 10 images of
H&E lung adenocarcinoma sample images. The key point in this experiment is
patch generation. Figure 2 shows one sample image extracted at four different
resolutions for each growth pattern. Tissue specimens contain other type of tissue

1 http://miccai.cloudapp.net/competitions/
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Fig. 2. Data set extraction. Each row represents one dataset. Each column represents
images from one class extracted in a decreasing magnification. Notice, the context is
gradually increasing as we move one magnification level while maintaining same image
size i.e. (224×224). In 40× dataset, cellular information is noticeable, however it is very
difficult to identify patterns at this level. As we decrease the magnification, the cells
start to show some architectural arrangements.

that does not comprise one of the growth patterns. These tissue could be one of
the following:

– background: this includes white background.
– non tumour tissue: this includes all other type of tissues, i.g: stromal tissue,

smooth muscles, necrosis, etc.
– group of tumour cells that does not form pattern.

Therefore, we would like our network to be able to classify a given image
into one of the following six classes: acinar, papillary, micropapillary, solid
and others, where others are all images that either background, non tumour
tissue, or tumour cells that did not form any pattern.
Next, two pathologists DS and AK annotated 10 whole slide images of H&E
lung adenocarcinoma. We then generated patches using the annotated re-
gions. Figure 3 shows an example of patch extraction. In Figure 3, we ex-
pand the context within each image by gradually moving from the highest
resolution (top image ) towards lower resolution bottom image. All images
are of the same size so we could employ the same network architecture for
training. Therefore, we could evaluate the performance of the CNNs when
trained on each resolution, independently.

4 MIUA2018, 053, v4 (final): ’Multi-Resolution CNN for Lung Growth Pattern Classification’



Multi-Resolution CNN for Lung Growth Pattern Classification 5

Fig. 3. Patch extraction for lung adenocarcinoma growth pattern classification. a) is
the WSI. The WSI is divided into small squares of equal sizes. Then, center of each
square is used as reference point to extract patches at each of the required magnification
levels. (b) patches are extracted from the same center point denoted by the arrow in
(a).

from the same annotated slides, We prepared three different training datasets
(40×, 20×, 10×) using the three whole slide image resolutions. In each
dataset, we have six classes: solid, acinar, papilary, lepidic, micropapillary,
and others (non pattern). Figure 2 shows examples of images in each dataset.

3 Experimental Results and Discussion

Images are augmented by applying Gaussian filter, rotation and flipping at
different angles. Data are divided into 80% for training and 20% for testing.
In total we had 7K images per class for training and 2K images per class
for validation. Then, we train ResNet [1] architecture on each dataset inde-
pendently. Training and validation parameters were fixed in all the datasets.
Image size is fixed to 224×224, all RGB channels is used as features for train-
ing, Adam method [2] was used for stochastic optimization, learning rate is
0.001. Max number of epochs is 50 with maximum number of training steps
1000, training batch size is 64, evaluation batch size is 32.
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Table 1. Validation accuracy for Resent trained on four different magnifications 40×,
20×, 10×, and 20× with 10×. In each network, best and worst accuracy per pattern
is highlighted with bold and italic; respectively

.

Magnification Solid Acinar Papillary Lpidic Micropapillary Others Mean

40× 89% 84% 93% 83% 81% 87% 86%
20× 94% 96% 73% 96% 95% 83% 90%
10× 94% 94% 77% 94% 98% 84% 90%

20× 10× 95% 99% 79% 88% 96% 87% 91%

We evaluate each network independently in terms of accuracy. Table 1 shows
the accuracy for each network. Network trained on 40× images have the low-
est accuracy. The mean performance is increased when training network on
images of 20× and then also when trained on 10× magnification. The best
performance for classification of acinar and lepidic is achieved by 20× net-
work while 10× network has the best performance for classifying micropap-
illary pattern. From this table we can conclude that the contexts within
10× and 20× images are good enough for the network to learn each pat-
tern. Therefore, training a network using images from both magnifications
could improve the overall accuracy. This is shown in the last row in Table 1.
The network is able to classify classes (solid, acinar and others) better than
previous networks.
Figure 5 shows the confusion matrix for each network. From the confusion
matrices we can notice the following: first, networks are mostly confused
between others and micropapillary classes. However, when combining 20×
and 10× together, we are able to provide both cellular features and pattern
morphology to the learning process. Thus, in 5 (d) the others vs. micro-
papillary confusion is reduced significantly. Second, acinar and papillary are
also confusing classes for the networks. This is due to the significant similarity
between these two classes and the possibility that one class might contain
instances of the other. Thus, increasing the training dataset could improve
the accuracy. We evaluated the the proposed framework on the whole slide
images. Results are shown in Figure 4.

4 Conclusions

In this work, we propose a deep learning approach for classification of growth
patterns in lung adenocarcinoma images. We evaluate the performance of
deep learning framework when trained on an increasing contextual informa-
tion. We find that network requires both cellular information and their mor-
phological architecture to differentiate between growth patterns. We train a
deep CNN on images extracted from two magnification levels and the overall
accuracy increased. In the future work, we plan to increase training patches
in our dataset and provide a quantitative evaluation of the network on whole
slide images.
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Fig. 4. (a, b) shows the results for two whole slide images using ResNet architecture
trained on images from 20× and 10× magnifications. Top row shows an image with
micropapillary predominant pattern. The bottom row shows an image with solid pre-
dominant pattern. The highlighted regions are shown in column b.
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