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Abstract. In this paper, an age-related macular degeneration (AMD) classifica-

tion algorithm based on local texture features is proposed to support the auto-

mated analysis of  optical coherence tomography angiography (OCTA) images 

in wet AMD. The algorithm is based on 𝑟otation 𝑖nvariant 𝑢niform 𝐿ocal 𝐵inary 𝑃atterns (𝐿𝐵𝑃𝑠()*+) as a texture measurement technique. It was chosen 

due to its computational simplicity and its invariance against any transformation 

of the grey level as well as against texture orientation change. The texture fea-

tures are extracted from the whole image without targeting a particular area. 

The algorithm was tested on two-dimensional angiogram greyscale images of 

four different retinal layers acquired via OCTA scan. The evaluation was per-

formed using a ten-fold cross-validation strategy applied to a set of 184 OCTA 

images consisting of 92 normal control and 92 wet AMD images. The classifi-

cation was performed on each separate retinal layer, and on all layers together. 

According to the results, the algorithm was able to achieve a promising perfor-

mance with mean accuracy of 89% for all layers together and 89%, 94%, 98% 

and 100% for the superficial, deep, outer and choriocapillaris layers respective-

ly. 
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1 Introduction 

Age-related macular degeneration (AMD) is a painless eye condition commonly 

found in people aged over 50 and is the leading cause of vision loss in this age group. 

This condition affects the macula (the central region of the retina) leading to central 

vision loss. The late stage of AMD, known as wet AMD, is characterised by the for-

mation of new blood vessels under the macula. Regrettably, the early stages of wet 

AMD are not observable by patients and can result in significant damage to the retina 

leading to blindness. Early detection and diagnosis of this disease are essential for the 

purpose of offering treatment options to prevent or reduce the possibility of vision 

loss [1]. 

Various eye imaging techniques such as optical coherence tomography (OCT) have 

been developed to assist ophthalmologists in detecting and examining eye diseases 
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that affect the retinal vasculature, such as wet AMD. The clear visualisation of retinal 

vasculature constitutes a critical element in the detection of wet AMD, however, OCT 

is limited in this regard [2]. An advanced technique of the OCT scan known as optical 

coherence tomography angiography (OCTA) has recently been developed. This utilis-

es motion contrast scanning of the flow of volumetric blood information producing 

clear angiographic images in a fraction of a second [2], [3]. Advantageous methods 

such as dye-free angiography and non-invasive three-dimensional imaging are also 

supported by OCTA. Since OCTA scans produce images for the various blood vessels 

of the choroid and retinal layers, changes in the blood vessels can be detected, making 

it a particularly suitable technique for identifying choroidal neovascularisation (CNV) 

in wet AMD [3]. 

The patterns of retinal vasculature structure, in particular retinal layers, are affected 

by wet AMD. These layers are the superficial inner retina, deep inner retina, outer 

retina and choriocapillaris. Ease of distinguishing blood vessel abnormalities varies 

between these layers, presenting less of an effect in certain layers than in others. At 

times abnormalities cannot be detected visually. Figure 1 shows four different retinal 

layers images captured using an OCTA scan for an eye of a patient with wet AMD 

condition and for a healthy eye. 

 

Fig. 1. The first row shows four different retinal layers (superficial retina, deep inner retina, 

outer retina and choriocapillaris) of a healthy eye and the second row shows the same retinal 

layers for the eye of a patient with wet AMD. It can be seen that the abnormalities in the blood 

vessel patterns vary between the different layers; they are clearer in the outer and choriocapil-

laris layers as compared to the other layers. 

The accurate detection and quantification of the CNV form in wet AMD patients 

would be particularly useful to ophthalmologists in their evaluation and diagnosis 

process, the consequences of which would determine the various treatments to be 

used [4]. As observed from the previous figure, the texture of OCTA images is affect-

ed by wet AMD. Ophthalmologists currently rely on the textural appearance of these 

images in their diagnostic process [1]. The simplest technique currently used for 
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quantifying CNV form in wet AMD is that of manually tracing the border of the ab-

normal blood vessel regions [4]. However, this technique is time-consuming and sub-

jective as it involves manual segmentation of the regions of interest and therefore its 

clinical utility is reduced. Moreover, evidence shows that recognising textural infor-

mation relevant to the spectral properties or higher-order statistics (HOS) of an image 

is problematic for the human eye [5].   

Automated methods that provide extraction of discriminative textural features are 

desirable as they could assist ophthalmologists in extracting the features that relate to 

a specific eye disease but are difficult to distinguish visually. Additionally, they could 

improve the diagnostic process by reducing the ophthalmologist’s workload. In this 

paper, a novel classification algorithm is presented for the detection of wet AMD in 

OCTA images. The proposed approach uses texture features based on the 𝑟otation 𝑖nvariant 𝑢niform 𝐿ocal 𝐵inary 𝑃atterns (𝐿𝐵𝑃𝑠()*+) descriptor introduced in [6]. 

2 Related work 

There is very little published work on the analysis of OCTA images for patients with 

wet AMD. One study [1], however, used OCTA images to measure the CNV area 

with a manual assistance for the purpose of identifying wet AMD features. A method 

was developed in [7] with a view to automating the analysis of OCTA images to de-

tect the CNV area in wet AMD. A recent study [4] proposed an automated method 

based on the segmentation of CNV area at the outer retina layer to enable the detec-

tion of wet AMD using OCTA images. Algorithms in both [4] and [7] involve a pre-

processing step for OCTA images to reduce noise areas by applying the Gaussian 

filter to obtain a clear image that highlights the CNV region. While this step is helpful 

in reducing noise, and enables the CNV region to be clearly visible, it excludes some 

of the CNV regions [4], [7]. However, it is believed that change in retinal vasculature 

structure is one of the key indicators of CNV in wet AMD and hence their clinical 

application is reduced since these methods are prone to error in diagnosis.  

Previously mentioned methods are based on segmentation of retinal vascular areas. 

Based on the segmented areas, some measurements are derived to identify the features 

related to normal and diseased retinas. However, it was observed that deriving accu-

rate measurements is difficult with these methods. This can be due to the complex 

characteristics of the diseases, noise caused by patients’ motion while capturing the 

images and can be influenced by human subjectivity when manual grading is in-

volved. It is true that a number of techniques can be used to reduce or remove noise 

from images such as the Gaussian filter used in [4] and [7]. However, when applying 

this filter, image details may change as occurred in [4] and [7] when some of the CNV 

regions were excluded. To the best of our knowledge, other techniques based on tex-

ture analysis using OCTA images and performing wet AMD classification have not 

been investigated yet. Therefore, this study focuses on improving upon the previously 

stated method and creates an automated wet AMD classification algorithm based on 

local texture features. 
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3 Proposed approach 

To overcome the various limitations of previous methods, the proposed algorithm 

aims to avoid employing any pre-processing steps (smoothing or filtering images) as 

it may change image details, as occurred in [4] and [7]. It also precludes the need for 

manual assistance. It uses the raw data (OCTA images) and is completely automated. 

The approach simply consists of two main steps. First, feature extraction, whereby the 𝐿𝐵𝑃𝑠()*+ features are extracted from all images (constructing the feature vectors); 

second, classification, using the features obtained (passing the feature vectors onto a 

classifier to classify subsequent yet unseen OCTA images). Segmentation is unneces-

sary since the algorithm combines both statistical approaches (computes the histo-

grams) and structural approaches (detects the micro-structures) on image texture pat-

terns. As a result, the proposed method would be particularly useful for wet AMD, 

even when its characteristics are complicated, and this is not the case with segmenta-

tion-based techniques, since deriving accurate measurements is too difficult to 

achieve. 

 

3.1 Feature extraction 

The 𝐿ocal 𝐵inary 𝑃atterns (𝐿𝐵𝑃) is a texture descriptor that first appeared in [8] and 

became popular by the introduction of the 𝐿𝐵𝑃𝑠()*+ descriptor in [6]. The 𝐿𝐵𝑃𝑠()*+ 

was chosen for use with this algorithm due to its outstanding advantages over many 

existing texture descriptors, as follows [6]: 

1. Invariance against illumination intensity changes, a common issue with OCTA im-

ages [9]. 

2. Invariance against rotation changes (ensuring that all images captured have a simi-

lar rotation can be challenging). 

3. Discriminative power of the features produced. 

4. No need to tune complex parameters. 

5. Low computational complexity. 

6. Ease of implementation. 

The 𝐿𝐵𝑃𝑠()*+ removes sensitivity to the rotation of texture images by computing 

the patterns within a symmetrical circular neighbourhood bitwise right shift and con-

siders only the patterns that are rotationally uniform, hence it is 𝑟otation 𝑖nvariant [6]. 

It is also invariant against any monotonic transformation of the grey level change 

since it considers the value of subtracting a grey value of a central pixel from a grey 

value of local neighbourhood pixel rather than the pixels' inherent value [6]. The bina-

ry pattern in the 𝐿𝐵𝑃𝑠()*+ descriptor is simply formed by thresholding a grey value of 

local neighbourhood pixel according to a grey value of a central pixel and then it is 

measured according to the given operator: 

𝐿𝐵𝑃𝑠,,(()*+ =	0 ∑ 𝑠(	𝑔, −	𝑔5),78,9: 			𝑖𝑓	𝑢(	𝐿𝐵𝑃𝑠,,() 	≤ 			2𝑝 + 1																																																				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 		,				𝑠(𝑥) =	G1,					𝑥 ≥ 00,					𝑥 < 0								 (1)	
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Where  

𝑢(	𝐿𝐵𝑃𝑠,,() = |	𝑠(	𝑔,78 −	𝑔5) − 	𝑠(	𝑔: −	𝑔5)| + 	L |	𝑠(	𝑔, −	𝑔5)	− 	𝑠(	𝑔,	78 −	𝑔5)|
,78
,98 			(2) 

Where 𝑢(	𝐿𝐵𝑃𝑠,,() is the uniformity measure technique that counts the number of 

bitwise (0/1 or 1/0) transitions that appear in the binary pattern and the maximum 

number of transitions for each pattern to be considered as a 𝑢niform is two; otherwise 

it is non-𝑢niform. According to [6] the superscript (.()*+	) indicates using the 𝐿ocal 𝐵inary 𝑃atterns that have at most two transitions “𝑢niform” and also 𝑟otation 𝑖nvari-

ant. 𝑔5 is the grey value of central pixel (𝑐) and 𝑔, is the grey value of local neigh-

bourhood pixel where 𝑝 = (0, 1, ....,	𝑝 − 1).  𝑝 is the number of local neighbourhood 

pixels that equally spread out around a circle of radius 𝑟, where 𝑟 > 0 and 𝑝 > 1. 

When the coordinate of (𝑔5) is (0,0), the coordinates of all 𝑔, are calculated by (-𝑟 sin(𝜋𝑝/𝑝), 𝑟 cos(𝜋𝑝/𝑝)). If any of the 𝑔, does not fall accurately within the centre 

of an image pixel, its location is then estimated by interpolation. 

The number of 𝑢niform binary patterns that can occur in the 𝐿𝐵𝑃𝑠()*+ with a 

symmetrical circular set of pixels 𝑝 is (𝑝 + 1). To precisely measure the texture of 

OCTA images, there are two parameters with the 𝐿𝐵𝑃𝑠,,(()*+ that have to be set proper-

ly. The first parameter is 𝑝, which defines the number of local neighbourhood pixels 

as well as the dimensionality of the histogram. The second parameter is 𝑟, which de-

fines the distance between the local neighbourhood pixels and the central pixel. The 𝐿𝐵𝑃𝑠()*+ patterns were extracted from each image and then each image was de-

scribed by a histogram with (𝑝 + 2) bins dimensional that counts the number of times 

of the 𝐿𝐵𝑃𝑠()*+ patterns occur within each image. The additional bin was added to 

tabulate all the non-𝑢niform patterns. 

Therefore, each histogram will be the feature vector that represents each image. 

Figure 2 and Figure 3 show four different retinal layers captured by OCTA scan for 

two eyes with different conditions, where the first figure shows a normal eye and the 

second figure shows an eye with wet AMD. In each figure, the texture of each retinal 

layer image was also measured with 𝑟 = 1 and 𝑝 = 8	and this is to show how the 𝐿𝐵𝑃𝑠()*+ values present the condition of wet AMD and normal of each particular 

layer. 
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Fig. 2. The first row shows OCTA images for the superficial, deep, outer and choriocapillaris 

layers for a normal eye and the second row shows the histogram of	𝑢niform 𝐿𝐵𝑃𝑠()*+ values 

where % of Pixels refers to the percentage of pixels' number that share the same 𝐿𝐵𝑃𝑠()*+ 

values within each retinal layer image. 

 

Fig. 3. The first row shows the OCTA images for the superficial, deep, outer and choriocapil-

laris layers for an eye with wet AMD and the second row shows the histogram of	𝑢niform 𝐿𝐵𝑃𝑠()*+ values where % of Pixels refers to the percentage of pixels' number that share the 

same 𝐿𝐵𝑃𝑠()*+ values within each retinal layer image. 

When the 𝐿𝐵𝑃𝑠()*+ values of both conditions are compared, it can be observed that 

the number of pixels that share the same pattern is almost comparable for the superfi-

cial and deep inner layers. However, it fluctuates in the outer and choriocapillaris 

layers due to the abnormalities in the capillaries caused by wet AMD. 
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3.2 Classification  

After obtaining these feature vectors (histograms), a classifier is then used to classify 

subsequent yet unseen OCTA images as having wet AMD or not. The classifier uti-

lised in this study is K-Nearest Neighbour (K-NN). In the K-NN classifier, a data 

point is classified based on the majority vote of its K neighbours. In this study, the K-

NN classifier was utilised by empirically setting up the K = 1 neighbour. Choosing 

the K-NN classifier to use in this study was motivated by the following: 

1. Simple to implement, understand and interpret. 

2. Requires no complex parameters tuning. 

3. No learning stage involved. 

4. Performs excellently with fairly well representative features. 

5. Widely used to assess the performance of texture analysis methods, as in [10], [11] 

and [12]. 

4 Evaluation and results 

The proposed algorithm was evaluated based on its performance in classifying OCTA 

images from various retinal layers as having wet AMD or normal control. These reti-

nal layers are the superficial, deep, outer and choriocapillaris layers. Twenty-three 

normal control and twenty-three wet AMD OCTA images of each layer were used in 

this study, resulting in a total of 184 images. The images used in this study were pro-

vided by Manchester Royal Eye Hospital. The classification was performed on each 

separate retinal layer and on all layers together. The results were evaluated using dif-

ferent evaluation strategies and statistical measurements. 

Validation sets were created using a ten-fold cross-validation strategy on all OCTA 

images. The mean accuracy (Acc) was estimated to assess the capacity of the algo-

rithm to differentiate correctly between wet AMD and normal control cases. Moreo-

ver, the mean sensitivity (Se) was measured to assess the capacity of the algorithm to 

recognise the wet AMD cases and also the mean specificity (Sp) to assess its ability to 

recognise normal control cases. As a ten-fold cross-validation strategy was applied, 

the standard deviation of Acc, Se and Sp of all folds were measured. Extensive exper-

iments were conducted to find the optimal combinations of 𝐿𝐵𝑃𝑠,,(()*+parameters 

namely 𝑟 and 𝑝. For example results see Figure 4, 5 and 6. Table 1 summarises the 

classification results of the proposed algorithm showing the optimal combination of 𝑟 

and 𝑝 for each classification experiment. 
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Fig. 4. Example results from the experiments conducted on the superficial and deep layers to 

find the optimal combination of 𝑟 and 𝑝. Each line chart shows the mean classification accura-

cy results for the optimal radius with its possible number of points (NumPoints) with respect to 

each layer. The line charts that on the left is for the superficial layer and the one on the right for 

deep inner layer. The mean accuracy (Mean) and the standard deviation (std) are also presented 

when a different number of points around a particular radius was used as well as the maximum 

classification accuracy (Max) achieved in each experiment. The Max was achieved with 𝑟 = 1 

and 𝑝 = 4 for the superficial layer and with 𝑟 = 4 and 𝑝 = 7 for the deep inner layer. 

 

Fig. 5. Example results from the experiments conducted on the choriocapillaris and outer layers 

to find the optimal combination of 𝑟 and 𝑝. Each line chart shows the mean classification accu-

racy results for the optimal radius with its possible number of points (NumPoints) with respect 

to each layer. The line charts that on the left is for the choriocapillaris layer and the one on the 

right for outer layer. The mean accuracy (Mean) and the standard deviation (std) are also pre-

sented when a different number of points around a particular radius was used as well as the 

maximum classification accuracy (Max) achieved in each experiment. The Max was achieved 

with 𝑟 = 8 and 𝑝 = 6 for the choriocapillaris layer and with 𝑟 = 5 and 𝑝 = 9 for the outer layer. 
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Fig. 6. Example results from the classification experiment conducted on all layers together 
using 92 normal control and 92 wet AMD images to find the optimal combination of 𝑟 and 𝑝. 

This line chart shows the mean classification accuracy results for the optimal radius with its 

possible number of points (NumPoints). The mean accuracy (Mean) and the standard deviation 

(std) are also presented when a different number of points around a particular radius was used 

as well as the maximum classification accuracy (Max) achieved. The Max was achieved with 𝑟 

= 9 and 𝑝 = 10 

Table 1. Classification results of the proposed algorithm with the optimal combination of 𝑟 and 𝑝 for processing each separate layer and all layers together.   

Retinal layers Optimal 𝐿𝐵𝑃𝑠()*+ parameters K-NN results 

Choriocapillaris 
𝑟 = 8 𝑝 = 6 

Acc = 100% ± 0.0 

Se = 100% ± 0.0 

Sp = 100% ± 0.0 

Outer 
𝑟 = 5 𝑝 = 9 

Acc = 98% ± 5.3 

Se = 100% ± 0.0 

Sp = 96% ± 10.7 

Deep 
𝑟 = 4 𝑝 = 7 

Acc = 94% ± 4.9 

Se = 98% ± 3.5 

Sp = 89% ± 8.9 

Superficial 
𝑟 = 1 𝑝 = 4 

Acc = 89% ± 8.9 

Se = 95% ± 8.03 

Sp = 84% ± 10.7 

All layers 
𝑟 = 9 𝑝 = 10 

Acc = 89% ± 2.0 

Se = 93% ± 2.2 

Sp = 86% ± 2.0 

 

From the evaluation results, it was observed that overall, the highest accuracy was 

achieved with the outer and choriocapillaris layers and this is due to the fact that the 

abnormalities in the blood vessels are clearer with these layers as compared to the 
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other layers and hence these changes are reflected on the pixels of OCTA images. For 

example, in the choriocapillaris layer, the percentage of the pixels that share the same 𝐿𝐵𝑃𝑠()*+ patterns are constant with all OCTA images that constitute normal control. 

However, this is not the case with wet AMD images, where the percentage of the 

pixels that have the same 𝐿𝐵𝑃𝑠()*+ patterns has fluctuated due to the abnormalities in 

the capillaries caused by wet AMD. 

The following figures illustrate the differences between wet AMD and normal con-

trol in OCTA images for the choriocapillaris layer. The texture of these images was 

measured by choosing 𝑟 = 8 and 𝑝 = 6. Figure 4 shows normal control and Figure 5 

demonstrates wet AMD. It can be seen clearly that the 𝐿𝐵𝑃𝑠()*+ patterns with the 

normal control have smooth lines since the number of pixels that have the same 𝐿𝐵𝑃𝑠()*+ patterns are constant; however, in the wet AMD they are not. 

 

Fig. 7. The 𝐿𝐵𝑃𝑠()*+ patterns in OCTA images for the choriocapillaris layer with the normal 

control cases. The % of Pixels here refers to the percentage of the number of pixels that share 

the same 𝐿𝐵𝑃𝑠()*+ values within each image while OCTA images refer to the number of chori-

ocapillaris layer images, which constitutes 23 images.  

10 MIUA2018, 050, v3 (final): ’An automated age-related macular degeneration classification . . .



11 

 

Fig. 8. The 𝐿𝐵𝑃𝑠()*+ patterns in the choriocapillaris layer with the wet AMD cases. The % of 

Pixels here refers to the percentage of the number of pixels that share the same 𝐿𝐵𝑃𝑠()*+ values 

within each image while OCTA images refer to the number of choriocapillaris layer images, 

which constitutes 23 images. 

5 Discussion and conclusion 

This paper presents an age-related macular degeneration (AMD) classification algo-

rithm based on local texture features to support the analysis of wet AMD in OCTA 

images. Due to the challenging nature of capturing images from patients' eyes using 

an OCTA scan, it can be difficult to ensure that all images have a similar rotation as 

well as to capture each one from the same field of view. To mitigate this problem, the 

algorithm employed the 𝐿𝐵𝑃𝑠()*+ descriptor that is invariant against texture orienta-

tion as well as any transformation of grey level change. With careful design, the algo-

rithm does not need any manual assistance or segmentation for particular areas as it 

uses the entire OCTA image to obtain the features from. Then, it uses the features 

obtained to differentiate between the images that have wet AMD from those that con-

stitute normal control. Accurate segmentation is hard to achieve when the characteris-

tics of the diseases are complicated, hence incorrect diagnoses are more likely to oc-

cur with segmentation. 

Four different retinal layers are tested in this study and the main purpose of using 

the various layers is to identify the layer that has the most discriminative information 

which describes the abnormal blood vessels patterns in wet AMD cases. Although the 

dataset used was relatively small, the algorithm achieved promising results in pro-

cessing all layers together and each layer separately. The highest accuracies were 

achieved with the outer and choriocapillaris layers since the deformities of blood 

vessels on these layers are very clearly observable. The most important finding of this 

study is that employing the local texture features based on the 𝐿𝐵𝑃𝑠()*+ descriptor in 
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the classification using OCTA images achieved outstandingly accurate results. Future 

work involves and is not limited to the following: conducting extensive experiments 

to find the optimal value of K neighbours, evaluating its reliability for application in 

clinical ophthalmology, testing it on a large dataset to determine its strength and effi-

ciency when a larger dataset is used and testing its capacity for identifying the severi-

ty of the disease by using a dataset that includes various stages of AMD cases. 
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