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Abstract. Liver disease has reached worryingly high levels worldwide
and there is a need for better analysis to monitor progression of disease
and response to therapy. Quantitative imaging such as corrected T1 and
PDFF can accurately quantify levels of inflammation/fibrosis and fat. In
this study we develop a method to assess regional change throughout the
liver to characterise disease change. We show that this method is stable
in healthy test-retest cases but is able to characterise change in disease
in autoimmune hepatitis cases.

1 Introduction

Liver disease has already reached worryingly high levels worldwide, and develop-
ment of methods to assess disease early, as well as its progression and response
to therapy is needed [8]. Conventional MRI imaging of the liver can be used to
assess anatomical variation; but the acquired image depends on the acquisition
settings and cannot be related to the underlying tissue characteristics. However,
quantitative imaging of the liver is becoming increasingly commercially available,
and can be used to assess pathology by measuring liver tissue characteristics.
For example, Myomaps, CardiacQuant, and CardioMaps pulse sequences can
be used to derive a quantitative T1 map of the liver which are related to in-
flammation/fibrosis [2]. First, however, the quantitative measure of T1 that is
measured by these pulse sequences has to be corrected for iron levels, which can
be measured separately. The corrected T1 and PDFF values are related to liver
inflammation/fibrosis and fat, respectively [2]. Such quantitative MRI is one of
the key modalities for non-invasive assessment of diseases such as non-alcoholic
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fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) [7]. These
scans allow quantitative and repeatable assessments of the liver, and can be a
non-invasive alternative to liver biopsies.

To monitor patient response to therapy, or the progression of disease, it is
important to be able to characterise change in the relevant organ, here the liver,
between two or more time points. This can be achieved by calculating change
from representative regions of interest (ROI) placed in the organ, or from the
change in a representative statistic from the whole organ or a chosen region.
There is also value in capturing regional change across the whole biological organ
or pathology. An organ or pathology can be divided into contiguous sub-regions
for local analysis [5]. Various other methods such as clustering are available to
assess regions of a tumour or organs at a single time point, and the change in a
global description can be used to quantify longitudinal progression of disease [6]
or shape change of the overall organ shape can be monitored [3].

In the study reported here, we propose an approach to assess regional change
in a cross sectional slice of the liver. The method aims to capture overall change,
particularly where there is disease variation, and can be applied to any set of
medical images where a slice wise correspondence can be established between
time points. However, this method is most valuable in quantitative imaging in
order to assess meaningful change. Our method enables, in principle, local change
to be captured that would be ‘diluted‘ when calculating a summary statistic
for the whole organ. An analogy to this automatic method would be manually
placing corresponding ROIs at two time point across the whole organ of interest
and measuring the difference. We are not aware of any methods that have been
used to measure regional change in the liver across time points.

2 Methods

We develop a novel approach to quantitatively assess change in regions of the
liver from quantitative corrected T1 maps (cT1), which, as described earlier,
measure inflammation and fibrosis. The workflow is shown in Figure 1. Two
quantitative cT1 scans of the liver are acquired at two time points with 4 or
more slices that are centred on the porta hepatis. In this example, a patient with
auto-immune hepatitis is scanned twice approximately 12 months apart while
undergoing treatment. Corresponding liver cross sections are manually selected
from the two multislice sequences; the livers are then automatically segmented
and large vessels excluded. Next, the segmentations are matched and superpixel
regions which are generated for the first image are mapped onto the second. This
allows a region-wise metric of liver change to be calculated.

The liver segmentations were performed using a deep fully convolutional
network to automatically segment the liver from the cT1 images while removing
larger vessels and ducts. The network takes a quantitative map as input and
comprises of 15 stacked convolutional layers with 3x3 kernels. The first half of
the network includes pooling layers to create a high level representation and the
second half of the network upsamples the represent to the original resolution,
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Fig. 1. The processing pipeline to measure regional change in the liver using quan-
titative cT1. cT1 is visualised using a specialised colour map that shows lower cT1
in the liver as green and higher levels that indicate potential inflammation or fibrosis
as orange or red. Step 1: automation segmentation at two time points, Step 2: mask
alignment, and Step 3: superpixel generation and measurement of regional change.

and, therefore, combining the trained high level representation with low level
features for the final segmentation (further details can be found in [4]). Larger
vessels and ducts are excluded so that change measurements are representative
of the tissue parenchyma (Step 1, Figure 1).

The liver was parcellated into superpixels using m-SLIC [5]. As with the
original simple linear iterative clustering (SLIC) superpixel method [1], m-SLIC
uses a distance function (d), in the local clustering, and combines spatial and
feature similarity as shown in Eqn 1.

d =
√
(df )2 + (ds/r)2 (1)

Starting from seed points, this method clusters the image into regions that
appear locally homogeneous, and provides an efficient coding of the image for a
number of computer vision tasks. m-SLIC extends standard SLIC method and
allows the creation of superpixels in an irregular mask. This method places seed
points in the mask using a distance transform and a regularisation step. After the
seed points are initialised correctly, standard SLIC is applied using this method
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(see our previous work for further details [4]). In this study, we use superpixels
of size 100 pixels, which aims to make the method robust to variation.

Next, we align the segmented liver masks from the second time point to
the first using an affine registration method (Step 2) and, using this transform,
propagate the superpixel regions from the first time point onto the second.

The alignment and superpixels allow direct comparison between regions of
the two images, to assess local changes in cT1 (Step 3). Matching of the liver
masks is more reproducible than whole slice registration because the method
is not affected by variation of other organs in the image. We currently only
consider alignment between single slices. The case shown in Figure 1 exhibits
regional inflammation at time point one and more homogeneous inflammation
at time point two – most likely due to AIH flaring – and the regional map shows
a local change in inflammation in particular in the right lobe.

3 Data

Human volunteers were scanned at the Oxford Centre for Magnetic Resonance
(OCMR) using a Siemens 1.5T Magnetom Avanto Fit equipped with Myomaps.
Seven male volunteers (from the Perspectum staff) were scanned, then taken
out of the scanner, then rescanned on the same scanner. Evidently, positioning
varies between the scans. A second study was also performed using patients with
autoimmune hepatitis (AIH) on a Siemens Magnetom Verio 3T MRI. This study
is ongoing; but in this initial assessment of the method we used 17 cases. Each
case was scanned and then rescanned approximately 12 months later. AIH is a
relapsing/remitting disease that is not always controlled by treatment. "Flares"
of inflammation are diagnosed clinically on biochemistry when they happen,
however predicting those at higher risk of a "flare" using non-invasive measures
is imperfect, hence there is potential for MRI to be used. We used this method
to characterise regional change within the dataset in a selected and neighbouring
slice.

4 Results

In this analysis, we defined a positive or negative change in cT1 of >75ms as
being of clinical interest and calculated the percentage of the liver that showed
an increase or decrease in excess of this amount, where an increase in cT1 cor-
responds to increase liver inflammation and fibrosis burden. This threshold was
qualitatively chosen based on previous work on a fatty liver disease cohort but
could be adjusted depending on the required sensitivity to change.

In the healthy test-retest cohort the mean proportion of the liver that showed
positive change was 0.99±1.01 % and negative change 0±0% which demonstrates
that the method is stable to variations in positioning as shown in Figure 2 and an
example is shown in Figure 3. AIH cases showed a mean percentage increase of
10.45±24.15% and the mean decrease was 3.76±10.07%. The Pearson correlation
between the chosen and next slice is also high 0.92.
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(a) (b)

Fig. 2. Percentage of the liver showing a change above or below 75ms (red is an increase
and blue shows a decrease) for a) the AIH cohort and b) the healthy test/retest cohort.
This is shown for the matched slice and the following slice)

(a) (b) (c)

Fig. 3. Healthy test/retest case showing only very small regional change in cT1 (ms)
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These cases were highly variable – depending on whether the patient shows
improvement under treatment or flaring. The net percentage change of the liver
was highly correlated to the mean liver change in cT1 (0.97) and, so for cases
with large homogeneous change, a mean measurement for the entire liver suf-
fices. However, in cases with local change such as Figure 1, the mean does not
sufficiently represent the change, and measurement of regional change is also nec-
essary. This is illustrated in Figure 4 for cases 14 and 15 (numbered from Figure
2). Case 14 shows a mean change of 32ms and case 15 shows a mean change
of 57ms. However, if we consider regional change above 75ms, we see that case
14 shows no change while 25% of the liver in Case 15 shows an increase above
75ms. This highlights the value in assessing local disease change. Therefore, Case
15 has seen a considerable increase in regional disease burden while in Case 14
there is only a small homogeneous change that could be affected by other factors
including diet.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Illustration of regional change measurement in cT1 (ms) in two cases (a-c and
d-f). The percentage of change is shown in Figure 2, case 14 and 15

5 Discussion

In this study, we propose a novel method to measure regional change in quan-
titative axial slices through an organ. We show that the method is consistent
across slices, and that it can be used to capture change due to pathology, and
is particularly useful for assessing disease where there is regional change. This
method is also robust to normal variation.
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Regions are used instead of a voxelwise comparison to make the method
robust to variations in position and noise. We use a threshold of 75ms to char-
acterise clinically interesting change and this appears to be a good choice to
account for normal variability as suggested by the test-retest study. However,
more research is required to determine the best choice. This method also does
not explicitly exclude artefacts in the image and these would need to be excluded
in some cases. In future, we plan to compare changes and response to therapy
to other clinical markers and end points.
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