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Abstract. The segmentation and classification of retinal arterioles and venules 

play an important role in the diagnosis of various eye diseases and systemic 

diseases. The major challenges include complicated vessel structure, 

inhomogeneous illumination, and large background variation across subjects. In 

this study, we proposed an improved fully convolutional network that 

simultaneously segment arterioles and venules directly from the retinal image. 

To simultaneously segment retinal arterioles and venules, we configured the 

fully convolutional network to allow true color image as input and multiple labels 

as output. A domain-specific loss function is designed to improve the 

performance. The proposed method was assessed extensively on public datasets 

and compared with the state-of-the-art methods in literatures. The sensitivity and 

specificity of overall vessel segmentation on DRIVE is 0.870 and 0.980 with a 

misclassification rate of 23.7% and 9.8% for arteriole and venule, respectively. 

The proposed method outperforms the state-of-the-art methods and avoided 

possible error-propagation as in the segmentation-classification strategy. The 

proposed method holds great potential for the diagnostics and screening of 

various eye diseases and systemic diseases.  
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1. INTRODUCTION 

Various eye diseases and systemic diseases manifest themselves on the fundus image as 

retinal vascular changes [1]. Specifically, diseases may affect the arterioles and venules 

differently. For example, the narrowing of retinal arterioles and widening of retinal 

venules independently confer long-term risk of mortality and ischemic stroke [2]. 

Identifying and quantifying these changes may provide useful information for the 

diagnosis and monitoring of these diseases. However, manual segmentation is 

extremely labor-intensive and clinically not feasible. Thus, it is of great importance to 

automatically segment and analyze arterioles and venules individually on the retinal 

images.  

In spite of the importance, arteriole and venule classification has been one of the 

major challenges in retinal image analysis. The main challenges are three-fold. First, 

the vessel geometry (e.g., diameter and tortuosity) varies a lot within one image and 

across different images. Second, by projecting a three-dimensional vascular structure 

into two-dimensional image, the vessel trees are overlapped with complicated 

structures. At last, the background variation between subjects is significant because of 

biological characteristics (e.g., race and age). In literatures, the segmentation (detecting 

vessels) and classification (labeling vessels as arterioles/venules) have been 

traditionally addressed by separate modules in retinal image analysis systems [3-6]. 

There are several limitations in this strategy. First, the performance is sensitive to 

parameter choices and module selection. Second, there is error propagation in the 

algorithm pipeline as the classification is based on the segmentation result.  

Convolutional networks have been widely applied in image labeling and 

segmentation in recent years. Though initially developed for image labeling, various 

methods have been proposed to give semantic segmentation in an image, which can be 

mainly classified as bounding box detection [7, 8] and semantic detection (pixel based 

detection) [9, 10]. In our study, the bounding box method is not feasible and semantic 

segmentation is desired considering the complicated vessel tree structures. In 2015, 

Ronneberger et al. proposed a U-shaped fully convolutional network (FCN) [11]. To 

increase the localization accuracy for fine structures, high resolution features from the 

contracting path are combined with the subsampled features in the expanding path. The 
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U-net has shown a better ability in segmenting finer structures, such as cell membrane, 

with very few training images. However, the original U-net has different input and 

output image sizes and only works on grayscale images, limiting its application to more 

general scenarios such as the arteriole and venule segmentation in color fundus image.   

In this study, we modified and extended the architecture of the U-net. Specifically, 

we configure the U-net to allow true color image as input and multi-label segmentation 

as output. We assessed our method and compared it with literatures on public datasets.  

2. Experimental Materials 

The DRIVE dataset includes a set of 40 color fundus photographs obtained from a 

diabetic retinopathy screening program. The images were acquired using a Canon 

CR5 non-mydriatic 3-CCD camera with a field-of-view (FOV) of 45o and a resolution 

of 565×584 pixels. DRIVE database is divided into two sets, each containing twenty 

images. The test set, which has both manual vessel segmentation and arteriole/venule 

labels, is included in this study. The INSPIRE dataset contains 40 optic-disc centered 

color fundus images with a resolution of 2392×2048 pixels [12]. Only selected vessel 

centerline pixels are labeled in this dataset. Arteriole centerlines, venule centerlines, 

and uncertain centerlines are labeled in red, blue, and white, respectively. 

3. Methods 

Our improved U-net model is a type of FCNs that allows end-to-end segmentations on 

a true color image. We employ the improved U-net to simultaneously segment both 

arteriole trees and venule trees in the retinal image. All three channels (i.e., red, green, 

and blue) are fused to allow the usage of all available information. 

3.1 Preprocessing 

Retinal image has a wide variation in background pigmentation, which may influence 

the performance of the FCN network. Image normalization by histogram matching is 

applied to eliminate the background differences. Histogram matching is the 

transformation of the histogram of an image so that it matches a specified histogram. 

By matching the histogram of the red, green, and blue channels individually, the 

algorithm can effectively match the hue of a color image to the hue of a specific 

image (Fig. 1).   
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Fig. 1. Image preprocessing. First row shows the original images and second row is after 

histogram matching. 

3.2 Training for arteriole and venule classification 

The U-net can be recognized as two parts, the descending part and the ascending part. 

However, in the original U-net, the feature map after each convolution loses its 

boundary pixels, resulting in different input and output image size. We apply same 

padding in convolution to avoid inconsistent image sizes. The activation function is 

rectified linear unit (ReLU). Our network minimizes the cross entropy of a pixel-wise 

soft-max loss between the predicted label and ground truth label over the final feature 

map. The input images are resized to 576×576 pixels by linear interpolation. The 

detailed illustration of the architecture is given in Fig. 2. Data augmentation is 

implemented by applying elastic deformation [13]. 

Four labels are given in the original DRIVE dataset, including arterioles, venules, 

crossings points and unsure vessels. In this study, crossing points are considered as 

arterioles and unsure vessels are considered as background. The INSPIRE dataset only 

includes labels for selected centerline pixels and is thus excluded from training. 

3.3 Testing  

Before being input to the pipeline, the testing image is resized to 576×576 pixels and 

the mean value of each channel is subtracted from the original image. The original 

output is three 32-bit floating images, which contain the probabilities of each pixel 

belonging to each of the three categories (i.e., background, arteriole, and venules). 
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Leave-one-out strategy is used for the DRIVE dataset. The INSPIRE dataset is tested 

on the network trained using DRIVE. 

 

Fig. 2. Improved U-net architecture for RGB color image segmentation. 

4. Results 

First, we compared our vessel segmentation with the manual segmentation in a 

pixel-wise manner, followed by the assessment of misclassification rate of arterioles 

and venules. To assess the general vessel detection ability and false positive rate, we 

calculated the overall sensitivity (SEN) and specificity (SP), in which all arterioles 

and venules are regarded as vessels and otherwise considered as background. 
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where TPo, TNo, FPo, and FNo are the true positives, true negatives, false positives, 

and false negatives of all vessel segmentation, respectively. We also assessed the 

misclassification rate (MISCa and MISCv) of arterioles and venules individually, 

meaning the rate of arterioles that has been misclassified as venules, and vice versa.  
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where TPa, TPv, FPa, and FPv denotes the true positives of arteriole, true positives of 

venules, false positives of arteriole, and false positives of venule within all correctly 

detected blood vessels. 

Visualization of original image, ground truth, and automatic segmentation results 

on the DRIVE dataset is given in Fig. 3. The SEN and SP of vessel segmentation is 
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assessed and compared with the state-of-the-art methods in Table 1. The SEN and SP 

of proposed method was 0.870 and 0.980. The misclassification rate was 23.7% for 

arteriole and 9.8% for venules. The overall classification accuracy and comparison 

with other methods in literatures are given in Table 2. The methods reported in 

literature are usually developed on known vessel segmentation and their results were 

also only assessed on known vessel segments or vessel centerlines. Our method, on 

the other hand, was assessed on all vessel pixels that are both detected by the 

proposed automatic method and given a ground truth label. 

Visualization of the original image, ground truth, and automatic segmentation on 

the INSPIRE dataset is given in Fig. 4. It should be noted that the original ground 

truth label only contains centerline pixels for selected vessel segments, which is 

dilated in Fig. 4 only for the sake of better visualization. The proposed method was 

not trained on the INSPIRE dataset because only a small percentage of centerline 

pixels are provided in this dataset. For the same reason, the specificity of vessel 

segmentation was unable to be assessed. The overall SEN was 0.830 and the 

misclassification rate was 27.2% for arteriole and 13.1% for venule.  

 

Fig. 3. Visualization of arteriole/venule segmentation on DRIVE. (a) and (d) are the original 

images. (b) and (e) are the ground truth labels. (c) and (f) are the results of automatic 

segmentation. 

Table 1. Comparison of different vessel segmentation algorithms on DRIVE 

Methods SEN SP Time Platform 

Human 0.776 0.972 - - 

Staal et al.[14] 0.719 0.977 15min 1.0GHz, 1GB RAM 

Ricci et al.[15] 0.775 0.972 - - 

Marin et al.[16] 0.706 0.980 ~90s 2.13 GHz, 2GB RAM 

Roychowdhury [17] 0.739 0.978 2.45s 2.6 GHz, 2GB RAM 

Proposed Method 0.870 0.980 ~6s GTX 1080 8GB 
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Fig. 4. Visualization typical result from the INSPIRE dataset. (a) and (d) are original color 

fundus images. (b) and (e) are the ground truth labels. It should be noted that the original ground 

truth label only contains vessel centerline pixels (single pixel width). (b) and (e) are dilated to a 

width of 6 pixels only for the sake of better visualization. (c) and (f) are the automatic 

segmentation results 

Table 2. Comparison of different arteriole and venule classification algorithms in fundus image 

Methods Database Accuracy Description 

Vazquez et al. [18] VICAVR 87% on selected major vessels 

Niemeijer et al. [19] DRIVE 0.88 (AUC) on known vessel centerlines 

Mirsharif et al. [20] DRIVE 86% on selected major vessels and main branches 

Proposed method DRIVE 83.2% on all correctly detected vessels 

5. Discussion 

Applying fully convolutional networks in the segmentation of medical image is 

challenging because the targets are usually small or have diverse appearance or 

complicated structures. In this study, retinal blood vessels are fine structures with 

complicated tree patterns. The simultaneous segmentation of artery and vein is 

challenging as vessel boundary information comes from a finer scale but 

distinguishing artery from vein requires a coarser scale. In our approach, we take 

advantage of the U-net architecture, in which high resolution features from the 

contracting path are combined with the subsampled features in the expanding path to 

increase the localization accuracy for fine structures. Another advantage of our 

method is that it directly classifies arterioles and venules from the original image 

without a pre-segmentation of the blood vessels. On the other hand, algorithms 
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reported in the literature that show better result usually require a high-quality vessel 

segmentation as input.  

Simultaneous arteriole and venous segmentation is the basis for other retinal 

image analysis towards computer-aided diagnosis, such as population-based screening 

of diabetic retinopathy and the measurement of arteriolar-to-venular ratio (AVR). As 

discussed by Estrada et al., though the significance of AVR has long been appreciated 

in the research community, the measurement of AVR has been limited to the six 

largest first level arterioles and venules within a concentric grid centered on the optic 

disc. Yet the more subtle and earlier changes in smaller arterioles and venules were 

not studied. The future work will be focused on a computer-aided labeling of DR 

signs and on the study of the association between smaller vessels and systemic 

diseases.  

6. Conclusion 

In this paper, we proposed to simultaneously segment retinal arterioles and venules 

using a fully convolutional network. This method allowed end-to-end multi-label 

segmentation of a color fundus image. We assessed and compared our method with 

literatures on a publicly available dataset. The result shows the proposed method 

outperforms the state-of-the-art methods in vessel detection and classification. This 

method is a potential tool for the computer-aided diagnosis of various eye diseases 

and systemic diseases.  

REFERENCES 

1. Gariano, R.F., Gardner, T.W.: Retinal angiogenesis in development and 

disease. Nature 438, 960-966 (2005) 

2. Seidelmann, S.B., Claggett, B., Bravo, P.E., Gupta, A., Farhad, H., Klein, B.E., 

Klein, R., Di, C.M., Solomon, S.D.: Retinal Vessel Calibers in Predicting Long-Term 

Cardiovascular Outcomes: The Atherosclerosis Risk in Communities Study. 

Circulation 134, 1328 (2016) 

3. Estrada, R., Allingham, M.J., Mettu, P.S., Cousins, S.W., Tomasi, C., Farsiu, S.: 

Retinal Artery-Vein Classification via Topology Estimation. Medical Imaging, IEEE 

Transactions on 34, 2518-2534 (2015) 

4. Kondermann, C., Kondermann, D., Yan, M.: Blood vessel classification into 

8 MIUA2018, 042, v3 (final): ’An improved U-Net architecture for simultaneous arteriole . . .



arteries and veins in retinal images. SPIE Medical Imaging 1-9 (2007) 

5. 濗濴瀆濻瀇濵瀂z瀂瀅濺, 濕., 濠濸瀁濷瀂瀁ç濴, 濔.濠., 濖濴瀀瀃濼濿濻瀂, 濔.: 濔瀁 濔瀈瀇瀂瀀濴瀇濼濶 G瀅濴瀃濻-Based 

Approach for Artery/Vein Classification in Retinal Images. Image Processing, IEEE 

Transactions on 23, 1073-1083 (2014) 

6. S濴濸z, 濠., G瀂瀁z灮濿濸z-V灮z瀄瀈濸z, S., G瀂瀁z灮濿濸z-P濸瀁濸濷瀂, 濠., 濕濴瀅濶濸濿ó, M.A., 

Pena-Seijo, M., Coll de Tuero, G., Pose-Reino, A.: Development of an automated 

system to classify retinal vessels into arteries and veins. Computer methods and 

programs in biomedicine 108, 367-376 (2012) 

7. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-Based Convolutional 

Networks for Accurate Object Detection and Segmentation. IEEE Transactions on 

Pattern Analysis & Machine Intelligence 38, 142 (2016) 

8. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards Real-Time Object 

Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis 

and Machine Intelligence 39, 1137-1149 (2017) 

9. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural 

networks segment neuronal membranes in electron microscopy images. 

Advances in neural information processing systems 2843-2851 (2012) 

10. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic 

segmentation. IEEE transactions on pattern analysis and machine intelligence 39, 

640-651 (2017) 

11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for 

Biomedical Image Segmentation. International Conference on Medical Image 

Computing and Computer-Assisted Intervention 234-241 (2015) 

12. Niemeijer, M., Xu, X., Dumitrescu, A.V., Gupta, P., Ginneken, B.V., Folk, J.C., 

Abramoff, M.D.: Automated Measurement of the Arteriolar-to-Venular Width 

Ratio in Digital Color Fundus Photographs. IEEE Transactions on Medical Imaging 

30, 1941-1950 (2011) 

13. Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative 

unsupervised feature learning with convolutional neural networks. Advances in 

Neural Information Processing Systems 766-774 (2014) 

14. S瀇濴濴濿, J., 濔濵瀅灭瀀瀂濹濹, 濠.濗., 濡濼濸瀀濸濼濽濸瀅, 濠., V濼濸瀅濺濸瀉濸瀅, 濠.濔., V濴瀁 G濼瀁瀁濸濾濸瀁, 濕.: 

Ridge-based vessel segmentation in color images of the retina. Medical Imaging 

IEEE Transactions on 23, 501-509 (2004) 

15. Ricci, E., Perfetti, R.: Retinal Blood Vessel Segmentation Using Line Operators 

and Support Vector Classification. IEEE Transactions on Medical Imaging 26, 1357 

MIUA2018, 042, v3 (final): ’An improved U-Net architecture for simultaneous arteriole . . . 9



(2007) 

16. Marin, D., Aquino, A., Gegundezarias, M.E., Bravo, J.M.: A new supervised 

method for blood vessel segmentation in retinal images by using gray-level and 

moment invariants-based features. IEEE Transactions on Medical Imaging 30, 

146-158 (2011) 

17. Roychowdhury, S., Koozekanani, D., Parhi, K.: Iterative Vessel Segmentation 

of Fundus Images. IEEE Transactions on Biomedical Engineering 62, 1738-1749 

(2015) 

18. V灮z瀄瀈濸z, S., 濕濴瀅瀅濸濼瀅濴, 濡., P濸瀁濸濷瀂, 濠.G., S濴濸z, 濠., P瀂瀆濸-Reino, A.: Using 

retinex image enhancement to improve the artery/vein classification in retinal 

images.  Image Analysis and Recognition, pp. 50-59. Springer (2010) 

19. 濡濼濸瀀濸濼濽濸瀅, 濠., 瀉濴瀁 G濼瀁瀁濸濾濸瀁, 濕., 濔濵瀅灭瀀瀂濹濹, 濠.濗.: 濔瀈瀇瀂瀀濴瀇濼濶 濶濿濴瀆瀆濼濹濼濶濴瀇濼瀂瀁 瀂濹 

retinal vessels into arteries and veins. SPIE medical imaging 

72601F-72601F-72608 (2009) 

20. Mirsharif, G., Tajeripour, F., Sobhanmanesh, F., Pourreza, H., Banaee, T.: 

Developing an automatic method for separation of arteries from veins in retinal 

images. 1st International eConference on Computer and Knowledge Engineering 

(ICCKE) (2011) 

 

10 MIUA2018, 042, v3 (final): ’An improved U-Net architecture for simultaneous arteriole . . .


