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Abstract. We describe and evaluate a method for segmenting cell nuclei
from serial block-face scanning electron microscope volumes. The nucleus
is a roughly ellipsoidal structure near the centre of each cell, appearing
as an irregular ellipse in each image slice. It is common to segment it
manually, which is very time-consuming. We use a Convolutional Neural
Network to locate the boundary of the nuclei in each image slice. Geo-
metric constraints are used to discard false matches. The full 3D shape of
each nucleus is reconstructed by linking the boundaries in neighbouring
slices. We demonstrate and evaluate the system on several large image
volumes.

1 Introduction

Serial block-face scanning electron microscopy (SBFSEM) creates detailed image
stacks covering a volume of tissue [1]. The sample is embedded in a resin block,
and a scanning electron microscope is used to take an image of one face of the
block. An ultramicrotome shaves off the surface of the block, and a new image
is taken. Each individual image may be up to 4096×4096 and there may be
over 1000 individual slices in a volume. Thus the volume may contain many
individual structures and it is very time consuming to manually examine each
image. Techniques for automatically analysing such volumes are important for
bio-science.

Fig. 1. Stack of images showing one nucleus (left) and 3D reconstruction of the nucleus
(right)
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This work aims to automate the process of segmenting and reconstructing
cell nuclei from SBFSEM volumes, to enable biologists to studying the structure
of the nucleus in 3D, qualifying nuclei and measuring their volume, radii and
length (see Figure 1).

Studies on nuclei analysis can be dated back six decades [2]. Many methods
have been proposed for segmenting cells for a wide range of applications, includ-
ing cell counting, cell typing, and studies of cell migration and interaction. In
general, there is a significant complexity and variability in cell image data, which
makes segmenting cells from other objects more challenging. However, most of
the work on nuclei detection is on images with much lower resolution than the
SEM images we work on.

The images we work with are very high resolution, so that details of the
nucleus can be resolved - the nucleus can be hundreds of pixels across (see
Figure 1). We seek to find the membrane around the nucleus so that we can
reconstruct the 3D shape. Automated methods for this do not appear to have
been proposed before.

Our method uses a CNN to identify pixels belonging to the membrane of
each nuclei, then post-processing to identify complete membranes. We use these
to propose candidates for nuclei in every image, then link the candidates across
neighbouring images to form extended 3D structures.

In the following we describe the approach in detail, and present results eval-
uating the technique.

2 Related Work

Several works on nucleus segmentation have been published [3][4]. It should be
noted, however, that although these approaches might work efficiently on the
authors data sets, their wider application has not been demonstrated. In [4],
a smoothing is applied to strengthen the nucleus border and maintain the low
contrast between background and cytoplasm. The edges are then enhanced by
applying a gradient direction edge enhancement operator to obtain a better per-
formance. The nuclear membrane is refined using a nucleus intensity threshold.
Their approach was designed for isolated cells, however, not for multiple cells.

Convolution neural networks (CNN) have been shown to be very effective for
a wide range of tasks including object detection [5][6] and image classification
[7][8][9]. A limitation is that to get good performance CNNs need to be trained
with large numbers of training examples.

Most of the recent studies on EM images are focused on segmenting and
reconstruction neurones. Jian et al. [10] trained CNN a pixel classifier to classify
each pixel into two classes ( membrane or non-membrane). Ciresan et al. applied
Deep neural networks (DNN) to detect membrane neuronal [11] and mitosis
detection in breast cancer [12]. Both methods use a pixel classier where the
classifier is trained on patches centred on the membrane itself, and their work
achieves good results.
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For nucleus detection, most of the existing work in literature on EM im-
ages was performed to detect nuclei centroids in histopathology images where
details of the nuclei cannot be resolved. In [13] Xu et al. used stacked sparse
auto-encoder on high-resolution histopathological images for nuclei detection by
learning high level features of nuclei using pixel intensity. Recently a structural
regression CNN [14] has been proposed which learn a proximity map of nu-
cleus. They modify the typical CNN by replacing the last layer with structured
regression layer to encode topological information.

Because we only have relatively small numbers of individual nuclei, we do
not have enough to train a general ”whole nuclei” detector. Instead we train a
CNN to identify the boundaries, and use post-processing techniques to identify
the whole boundary and reconstruct the 3D shape. This has the advantage that
we can easily deal with the partial nuclei which intersect the edge of the image
volume.

3 Method

SBFSEM images are time-consuming to collect (involving extensive sample prepa-
ration and many hours to image each sample), we only have small numbers of
volumes. It is thus impractical to annotate large numbers of complete nuclei,
which one might like to do to build a comprehensive detector. Instead we work
with a small number of annotated nuclei, each containing many labelled pixels
(both on and off the target boundary). We train a CNN classifier to identify
whether a pixel belongs to a nucleus membrane or not. This can identify the
nucleus, but also responds on similar looking membranes such as mitochondria
and the Golgi apparatus, leading to many false positives. These objects’ mem-
branes share some features of nuclei membranes and need to be eliminated. We
identify every connected component and perform morphological operations to
remove noise and discard false matches.

In the final stage, we reconstruct every nuclei through the image stack. The
nuclei radii in SBFSEM range from 200 pixels to 900 pixels. Finding the centre
of gravity of each nucleus and matching it its correspondence in the next frame
is sufficient to link them.

3.1 Convolutional Neural Network Architecture

Our segmentation algorithm is based on training a CNN to perform pixel binary
classification. The architecture of the network consists of six learning layers, four
convolutional layers, and two fully connected layers, as shown in Figure 2. The
output of the network is the probability that the central pixel belongs to a nuclear
membrane or not. The CNN is trained on N×N patches (we choose N = 64 to
provide a sufficient trade-off between the local information to be extracted and
memory usage) centred on boundary pixels (positives) and background pixels
(negatives).
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Our architecture is similar to [11], but our network includes a dropout layer
to prevent overfitting [15]. The kernel size and number of output maps is larger
in the first convolutional layers to capture more information about variability in
the low-level features. The output of the last fully connected layer is fed into a
binary softmax to produce the probability of class label.

Fig. 2. CNN architecture consisting of four convolutional layers and two fully connected
layers where each convolutional layer is followed by Rectified Linear Units (ReLU) and
Max-pooling.

Each layer of convolution and fully connected output is followed by Rectified
Linear Units (ReLU). Max pooling is applied to the output of each convolutional
layer to prevent overfitting and to down-sample by a factor of 2. The second-to-
last fully connected layer is followed by a drop out layer.

3.2 Training Examples

The training examples for nuclei segmentation were collected from a stack of
images consisting of 157 slices with a resolution of 966×876. We selected 16 rep-
resentative slices, and annotated the nucleus membranes by marking the middle
of the nucleus membrane. Membranes around other structures, such as Golgi and
mitochondrial cytoplasm membranes, were annotated in the same way, to pro-
vide negative examples. We then extracted patches with a size of 64×64 centred
on the annotated points.

We augmented our samples by applying eight different rotations for each,
and different scaling and reflection, giving a training set of 1.2M samples (50%
positive).

3.3 Removing False Positives

The segmentation results contain many false positives (see Figure3.b) due to
similarities in the appearance of the membranes of different structures. How-
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ever, since the nuclei are usually the largest structures in the image, we can
use straightforward processing steps to pick them out. We apply erosion to the
binary image to eliminate thin false positives (Figure3.c), with a radii chosen
based on the known width range of the nuclei membrane. We then identify all
connected structures and remove those with areas below a threshold, again cho-
sen based on the known size ranges of the nuclei. This enables us to identify the
nuclei membranes (see Figure 3.d).

Fig. 3. (a) Original image. (b) CNN pixel classification (c) Result after applying ero-
sion. (d) Result after eliminating the small connected components.

4 Nuclei Detection and Reconstruction

The steps described above enable us to identify the parts of the nuclear mem-
branes present in each 2D image slice through the volume. To find the nuclear
membrane we find the contour of every connected component. Figure 4 shows an
original image with the found contour following a nuclear membrane. Not all nu-
clear membranes contours are continuous, however, and some have broken links
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between them. This is because (a) during tissue preparation errors can occur,
especially when slicing the sample, and (b) the classifier can fail to detect the
nuclear membranes during the segmentation process. To address this issue, we
merged three neighbouring slices together by averaging them as the movement
of the nuclei between slices is small. Thus, if a nuclear membrane is broken, it
will be fixed by merging the previous and subsequent slice (see Figure 5). We
then find the external contour for each nucleus.

As each nucleus in our dataset had little drifting between slices, and the
distance is relatively large between nuclei, we used a simple approach for tracking
nuclei and linking each nucleus to its match in the next slice. We fitted a disk
based on the set of points we obtained from the nuclei contours, similar to the
method in [16].

We assumed that all candidate disks in the first slice were the start of a
nucleus, creating n1 nuclei each containing a single disk. We then processed the
subsequent frames one at a time, using the candidate disks to either extend an
existing nucleus, or create a new nucleus if there was no match in the previous
frame. This identified a large number of nuclei. By comparing the disks at the
ends of the nuclei we could identify and correct the small gaps that were caused
by detection failures. Short structures (those visible in fewer than five frames)
were rejected as they were unlikely to be nuclei.

Fig. 4. (a) Original Image (b) Located contour around the nucleus membrane.

5 Experimental Results for Nuclei Segmentation

We applied our model to four different datasets, each consisting of hundreds
of images that were acquired using the SBFSEM technique (see table 1). The
images contained nuclei, mitochondria, and Golgi apparatus. Most of the nuclei
had a roughly circular or elliptical cross-sections, whereas the mitochondria had a
mostly circular shape. Golgi and mitochondrial membranes share several features
and they look the same, but the mitochondrial inner body has parallel lines due
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Fig. 5. A sequence of three slices. slice (z-1), slice(z), slice( z+1), and all combined

to the folding of the inner membrane. The outer membrane of mitochondria,
however, sometimes appear as thick as in nuclei, and share the same appearance
as nuclei. This led our classifier to classify some mitochondrial outer membranes
as nuclei.

Dataset Number of Slices Image dimensions

Dataset 1 1000 3000×3000
Dataset 2 700 4096×4096
Dataset 3 603 4096×4096
Dataset 4 157 966×876
Table 1. Details of the four image volumes

5.1 Evaluation Criteria

For quantitative assessment, the ground truth and segmenting results are given
by filled closed contours. The foreground objects (nuclei) are shown as white pix-
els and the background is shown as black pixels. To evaluate a binary segmenta-
tion, we selected the per-pixel Precision, Recall, Accuracy, and Dice coefficients
[17] as performance measures:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Accuracy =
TP + TN

TP + FP + FN + TN
(3)

Dice =
2 · TP

TP + FP + TP + FN
(4)

Where (TP) is true positives, (TN) is true negatives, (FP) is false positives,
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and (FN) is false negatives of the classified pixels. A perfect segmentation is
obtained when Precision and Recall are 1. When Precision is low, this indicates
over-segmentation, and when Recall is low, it indicates under-segmentation.

Accuracy is the proportion of the true positives and true negatives among the
total number of pixels. To assess the accuracy of image segmentation, the Dice
coefficient is used to measure the spatial overlap. The Dice coefficient value
ranges from 0 to 1, where 0 indicates no spatial overlap between two binary
images and 1 indicates a complete overlap [17].

Selected qualitative segmentation results are shown in Figure 8 from the four
datasets. This figure shows the original image, the manually annotated nuclei,
and the segmentation results.

We annotated a total of 120 images manually, selecting 40 from datasets 1 and
4, and 20 from data sets 2 and 3. Images from the first three datasets each image
roughly 10 nuclei, those from dataset 4 contain only two nuclei.

Figure 6 summarises the results. The average accuracy is above 96% for
dataset 1, 96.5% for dataset 2, 97% for dataset 3, and 95.5% for dataset 4.
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Fig. 6. Quantitative nuclei segmentation results for the four datasets.
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Fig. 7. Quantitative analysis of nuclei length, radii and volume for Dataset 1.

Figure 9 and 10 shows the full reconstruction of nuclei from Dataset 1 and 2.
The utility of this visualisation is done using IMOD software and random colour
was given to each nucleus.

5.2 Quantifying the Nuclei

Biologists are interested in quantifying nuclei based on shape information such
as length, radii and volume. We show histograms of the length, average radii and
volume of each nucleus for dataset 1 in Figure 7 (where the length is the number
of slices in which the structure appears). To measure the radii of each nuclear
we fit a circle based on the nuclear membrane contours points for each slice and
then take the mean radii. The volume is calculated from the total number of
pixels inside nuclear membrane for each slice.

6 Discussion and Conclusions

We describe a novel method for segmenting and reconstructing nuclei by ex-
tracting the 2D boundaries of each nucleus from SBSEM image stack. The main
strength of our method lies in that a CNN that trained on small patches gives a
powerful classifier. The method provides accurate results, and will enable auto-
matic analysis of large image volumes from SEM images.
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Fig. 8. Random image were selected from each dataset. First column shows the orig-
inal image, second column shows the ground truth and the third column shows our
segmentation result. First row from Dataset 1, second row from Dataset 2, third row
from Dataset 3 and the fourth row from Dataset 4.
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Fig. 9. Visualisation of all nuclei of Dataset 1 found by the algorithm.

Fig. 10. Visualisation of all nuclei of Dataset 3 found by the algorithm.
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