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Abstract. Parkinson’s disease is a progressive, incurable neurodegenerative con-
dition affecting movement which has been linked to poor quafitiving and
considerable socio-economic burdens. To date, treatment can at bestwlow d
the degradation process. However, successful disease managesutject to
early detection of the disease which, in turn, depends oriageastic process.

Clinical investigation alone has proven insufficient in discriminating between
early Parkinson’s disease and essential tremor. Functional neuroimaging circum-
vents this problem by visualising dopamine transporter concentratioh® in t
brain, providing a differential even during the early stagéseoflisease. Yet the
traditional visual assessment of SPECT data introduces subjectivity ang-susce
tibility to variation whilst being impractical for monitoring and assesslisease
progression.

This work, presents a machine-learning approach to the asses$nteateo
dimensional SPECT data. The system extracts intensity and shape information
from the data following binarisation which utilises an experimental agprto-
wards the identification of an optimal threshold. The striatal binditig is cal-
culated based on the three-dimensional data rather than two-diméctioal
standard. The resulting semi-quantitative measure and the extraetesitjinrand
shape information are collectively used as data features and ggetedhio a
support vector machine to classify between positive and negai$es of Par-
kinson’s disease. The classification system is reported to attain an average accu-
racy of 97%; with 96.6% sensitivity and 97.8% specificity. Thizwghan im-
provement over the clinical standard visual assessment which repottaitigc
94% sensitivity and 92% specificity.

Keywords: Classification, Machine LearninGomputer-Aided Diagnosi®ar-
kinson’s Disease, Single-Photon Emission Computed Tomography.
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1 I ntroduction

1.1  Parkinson’s Disease

Parkinson’s disease (PD) is characterized by loss of dopamine transporters (DaT) par
ticularly in the striatum, a key region in motor control [1]. Typicahptoms of PD
include: resting tremor, bradykinesia (slow movement), rigidity astupal instability,

all of which are associated with considerable morbidity and socio-econanderts

[2]. To date, PD is incurable and the degenerative nature of the disoqesithat

the damage inflicted by the disease increases throughout life. Thus ligretieadis-

ease is detected, the higher the possibility of preserving life [8.diagnosis route is
lengthy, often involving a clinical assessment followed by the analy¢ie response

to medication, such as levodopa, as well as nuclear imaging scans.

1.2  Clinical Background

Research has established that clinical examinations often prove to be incorrect after
subsequent follow-ups [4]. In many cases PD is mistakea digstinct condition with
similar symptoms, known as Essential Tremor [5]. Disease maneageliffers greayl
between the two as does prognosis and hence inaccurate diagnasie leader- or
over-treatment with medication being prescribed unnecessarify. [6

Typically, PD is confirmed upon reduction in the severity of PD sgmp follow-
ing periodic administration of levodopa [8]. However, in the edalges of the disease,
symptoms tend to be mild and atypical with a poor response to levodakiagnfior
complicated diagnosis, often with inconclusive resultéIp-

Despite this, research suggests that the neurological signs of PDeseatdong
before the manifestation of clinical symptoms with at least 50% striatal dopamine loss
taking place prior to the emergence of clear clinical symptoms [2]. midtivates the
application of single-photon emission computed tomography (SPE®@Flén to vis-
ualize DaT concentrations in the brall?]. DaT are known to be partially lacking in
early PD cases but are often found in healthy concentrations in theqeresessential
tremor. As a result, it has been revealed that the use of SPECT imagingibiasl en
the differentiation of PD patients from healthy subjects and patients witnteds
tremor with approximately 90% sensitivity and specificit@][[14] [15].

1.3 DaT SPECT Imaging for Parkinson’s Disease Diagnosis

DaT SPECT imaging results in greyscale images where the intefiggch pixel is
directly correlated with the counts registered by the gamma camera. &rbagh
intensity indicate a higBaT concentration. Data is typically acquired in three-dimen-
sions comprising a volume which is visually inspected by a cliniciare obiserver
seeks domogeneous, symmetrical ‘comma-shaped’ pattern which depicts healthy stri-

atal uptake 16]. Any other pattern is classified as abnormal with early PD cases typi
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cally demonstrating reduced uptake in the putamen and hence a ‘full stop-shaped’ pat-
tern [2]. Being a visual assessment, this approach is inherently subject tobaesxer
variability as well as human error.

1.4  Project Outline

This work presents an automatic classification system which differentiategen
postive and negative cases of PD. DaT SPECT volumes are analysed inftehagey
intensity and semi-quantitative measures. These are used to forrageapnesenting
the said volumes during classification which is carried out using a swmmor ma-
chine (SVM).

The images resulting from SPECT provide a qualitative measure of thenawy-
gic system integrity from a direct correlation of the image context witholwagical
function. However, this falls short of the requirements for longrtassessment of
disease progression due to the lack of quantitative informaticgseRtty, the striatal
binding ratio (SBR) is occasionally used at some imaging centres intorgesvide
guantitative information, however, this is generally calculated from a tmertsional
image, neglecting considerable informatidi7][ In this work, efforts were directed
towards making the most out of the 3D data available; including, amongtioitings,
the extraction of a three-dimensional version of the SBR. All feahnegxtracted
following consideration of the entire volume and this also applies to tRens&asure
used in this work.

2 Study Dataset

The data used in this study was provided by the Parkinson’s Progression Markers Ini-

tiative (PPMI) under which a large-scale study was conducted to acquire dliafaal
from individuals of significant interest with respect to PD. The collecsta was re-
viewed by experts and compiled into a publicly-available database and biorepository
for research purposetq]. The work presented in this document is based on a portion
of this data. It comprises DaTScan SPECT volumes acquired longitudinally and uni-
formly from 344 early Parkinson’s disease patients and 193 healthy control subjects

[29].

SPECT imaging scans were carried out using EECIT (also known as
DaTScan) administered in doses of 185MBq and imaged 4 + 0.5 houf@teRaw
projection data was acquired into a 128 x 128 matrix with a steppaig ah3° and
with the acquisition window centred on 159 + 10% keV. A parallel hdlienador was
used in step and shoot acquisition mode with each head rotating 360°.

Pre-processing involved iterative reconstruction using orderegsekpectation
maximization (OSEM) through the HOSEM reconstruction program within the
HERMES package. Attenuation correction and filtering were carried out tlséng
Chang 0 method and a standard Gaussian 3D 6mm filter respectivedges were
anatomically aligned (registered) and normalized to the standard Montrealddguro
Institute (MNI) space [9]. The resulting scan volumes were storBtdOM format.
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3 M ethodology

3.1 Volume Visualisation

The 3D DaT SPECT volumes acquired from the PPMI repository weregifitstlised
with the help of a tailor-made interactive console. Using this consoleséndsual-
lowed to navigate through the 3D volume by manually placing a pairogshairs at
any location within the volume andewi the three cardinal image slices (transverse,
sagittal and coronal views) along with the corresponding numbegstered counts
at that point. This approach enabled an understanding of the dataset andstimg
visual differences between the healthy and pathological subBigtsl illustrates the
mentioned console being used to view the control data.

3.2 DataCropping

The initial visualisation step led to the observation of radiopharmaceutical uptake to-
wards the jaw region of the head.

DaTScan SPECT Data - Healthy Control Subject 1
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Fig. 1. The slice viewer console displaying transverse, sagittal and coronal imagerslicéise
DaT SPECT data of a healthy control subject.
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This is a known phenomenon whereby the parotid glands take wpdibpharmaceu-
tical and therefore show up as regions of high activity in the D&CFR/olume. As

a result, locating the striatal uptake region by thresholding the voxel countoistu-

sion with the striatal regions which are the true markers of DaT presetieebnain.

To prevent this, the 3D data was restricted to a smaller 60x40x25 pixel volunie whic
captured the entire striatal region without incorporating uptake correspondigg to
gions outside the anatomical region of interest.

The dimensions of the mentioned volume were determined following manual test-
ing. This involved plotting an arbitrary cuboidal boundary onto th&i8Dalisations.

The initial dimensions of the cuboid were seled®ihcorporate the striatal region.
The 3D DaT SPECT visualisations were programmed to display sequefdiathe
entire dataset. Regions of striatal uptake lying outside of the plotted bouretary w
identified and triggered a correction in the dimensions of the cuboidatlhoy The
procedure was repeated following each alteration in dimensions.méhisal testing
process converged, resulting in the optimal volume having the diomn60x40x25
pixels. This testing was based on a datasé00DaT SPECT 3D volumes.

The defined 60x40x25 pixel volume was centoedthe centroid of striatal edge
pixels. Edge detection was carried out on the 2D transverse slice which tatedns
the striatal uptake region most clearly. By default, this corresponded t® ttnariz-
verse slice which housed the voxel registering the highest count,, ttegt ke st slice.

Each best slice was sharpened using unsharp masking and subgdquepass
filtered [21]. This process resulted in the suppression of background artefacthe
accentuation of edges within the best slice, facilitating edge deteEir illustrates
samples of the best slice at the different stages of this process.

Edge detection was carried out through convolution by Sobel operatoesesult-
ing binary image of the best slice consisted of edge pixels fronttestriatal region
andthe boundary of the patient’s head, as shown in Fig. 3A.

A)

B) O

~A\

Fig. 2. The original best slice (A), the sharpened best slice (B) and the shagrehbtirred
best slice (C) for a healthy control subject.

In order to remove unwanted artefacts, the best slice was multiplied by the circular
binary mask shown in Fig. 3C. The circular binary mask was cerdethd centroid

of all edge pixels in the imag@1]. The radius of the mask was set to 30 pixels, fol-
lowing iterative testing. Fig.Bdepicts the circumference of the circular binary mask
superimposed on the best slice for illustration purposes. Bigh8ws the resulting
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clean representation of striatal edge pixels in the best slice following the multiplication
described. This procedure proved successful across the entire datasehespatial
alignment and co-registration of the imageg| [18] [19] [23].

At this point, the best slice was a binary image consisting of edge piltiels per-
tain to the striatal region. The centroid of these pixels was computed and ase0 as
reference point. A 60x40x25 pixel volume centered upon this referemioe vpas
cropped out of 3D DaT SEPCT volume for each patient. FEgr8vides a 2D illus-
tration of this volume centering procedure. The area within the redepoesents the
new cropped 3D volume. This procedure led to the reduction @aheSPECT vol-
ume of each patient to a smaller region which excludes any high-aotigions which
are unrelated to the striatum. The dimensions of this volume oééhterere deter-
mined empirically, following iterative visual testing. This was carriedoauoughly
75% of the datad(0 subjects) selected at random. These iredabth Parkinsots
disease patients and healthy controls. Having a generoustastalskedhe selection
of parameters which suit a wider variety of cases. This procedurevier, preserved
aquarter of the dataset to avoid overfitting and allow for fair testing andfidagsn
at later stages.

3.3  Segmentation

Each 3D volume was segmented in order to separate the volume of interesiattle s
region) from the surrounding volume. Segmentation was achievéudsholding the

Fig. 3. The original edge pixels of the best slice (A), the circle separating sedgal pixels
from the head boundary edge pixels (B), the circular binary mask{ha striatal edge pixels
(D). A 2D illustration of the volume centering procedure (E).
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registered counts within the 3D volume according to Eqn. 1. Thiputartion is based
on the mean intensity or voxel value of the 3D volume (u) and atduatbviation of
the intensity or voxel values within the 3D volune.

threshold = 0.6 — (1(0.3 — 1)) +° (1)

The 3D data of each subject was initially normalised to the maximunsityt§uoxel
value) of each 3D volume. This resulted in intensity values baet@eead 1, creating
a common standard across the dataset. A comparison of valuestherasthject
groups revealed that control data resulted in a lower mean intensity wheareal to
pathological data. As a result, the simple numerical threshold of 0.6 wisietgested
by Lyra et al. and Prashant et al., proved insufficiedt [25]. For this reason, the
mean intensity (1) was factored into the equation.

Thresholding was applied using a threshold equation which simplyastéatrthe
normalised mean intensity from 0.6. Visual validation of the data folpthreshad-
ing indicated that the larger the difference between the mean and Ol&gérethe
required increase in the threshold value, hence the need to scale thadhresation
to the mean. The overall mean intensity for control subjects wasd toube close to
0.3. Further visual validation showed that the deviation of the mean igtépsit 0.3
provided the required threshold correction, hence the inclusion of the(@e3m).
However, since the required threshold correction seemed to increase at a fasher rate,
term (0.3p) was multiplied by the mean to increase the magnitude of the correction
factor.

A final observation revealed that in cases with an excessively large ostmnaliard
deviation, the mean-corrected threshold proved insufficient. Thus, titastiadevia-
tion was factored into the equation to counteract this effect.

Throughout the development process of Eqn. 1, visual validation wéedoaut by
means of a short script file designed to perform segmentation and dispdeytzd!
images in the dataset in succession. Eqn. 1 was found to prodsceatalst accurate
segmentation results across the entire dataset.

34  Surface Rendering

The thresholding process resulted in 3D binary volumes where voxels thithiegion
of interest were assigned a value of 1 and the remaining were assigalee of 0. In
order to picture the striatal regions, the binary 3D data was transformeddsatéace
using a 3D interpolation method. Fig. 4 illustrates the 3D striatal region sueiader
from control and pathological data.
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Surface Rendering of DaTScan SPECT Data Surface Rendering of DaTScan SPECT Data
A Healthy Control Subject 5 - Both Striata Parkinson's Disease Patient 4 - Both Striata

Fig. 4. 3D striatal region surface render from control data (A) and pathological data

(B).

3.5 FeatureExtraction

Feature extraction involved selecting a set of attributes which can be compuuned fr
the data in order to be able to discriminate between healthy and pathotzgsieal
Three types of features were extracted and included in this study: intEradityes,
shape features and semi-quantitative measures

In a clinical environment, clinicians discriminate between healthy and pathological
based on the shape of the uptake regionl[@] [This warranted the inclusion of shape
features into the feature set. Voxel intensity features were includedeggzech sug-
gested that DaT images from Parkinson’s disease patients exhibit reduced uptake in the
striatal region in comparison with healthy subjects [1]. Due to the injjalication
for quantifying striatal uptake, semi-quantitative measures were included asg$aatur
this study since they are known to differ across the two grawger investigation1[6].

The extracted features were the: average and normalised int@&itsnjerage and
normalised intensity gradient, maximum intensity, compactness, diagomejattm,
extent, majorto-minor-diameter, mide-minor diameter24] [25] [9], total striatal vol-
ume and the striatal binding rati@7]. In each case, the corresponding asymmetry
index was also extracted in order to capture the difference between the lefttand rig
striatal region in terms of the feature being considered. Asymmetry insiexes! as
features.

3.6 Feature Selection

Feature selection was used as a dimensionality reduction tool and validatiotostage
identify a subset of strong features which provide high classifiermpesfice with min-
imal loss of relevant information. The dataset was split into two equabpgrone of
which was used exclusively for feature selection and validation. Thamem portion
was used for the final classification. Sequential feature selection was catriesingu
10-fold cross-validation.Training and testing of the classifier at feature selection stage
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was repeated 10 times with each fold used only once for training. réBults were
calculated using the misclassification error (MCE) and were averaged over the 10 iter
ations to provide the final outcome.

Starting with an empty feature set, the feature selection algorithm adeatlie fto
the set and carried out classification using a linear kernel to predtesult before
adding another feature and repeating the procedure. The praxesspeated itera-
tively until the MCE was reduced to a minimum. The features formingobahte
feature set at the minimum MCE are the selected featiies.selected features were
the: majorto-minor diameter, elongation, maximum intensity asymmetry indest-av
age intensity asymmetry index, normalised average intensity gradigétgls/olume
asymmetry index, extent asymmetry index, striatal binding ratio, congsscasym-
metry index and diagonalThe striatal binding ratio is a semi-quantitative measure
which was defined as in Eq8, where the striatum is the target region indicated in red
in Fig. 5 and the occipital region in a low-uptake reference region indizat#de in
Fig. 5. A detailed explanation of the computation of the mentioned features can be
found in R1].

3.7 Classfication

Classification was carried out using a SVM with a linear kernel and a feztuneade

up of the mentioned 10 features. The classifier was trained on 50% aitéisetdand
tested on the remaining 50%. Classification was repeated 100 times anduttze\ac
was averaged. Fig. 6 illustrates the pipeline of the system fotdwighunderstanding.

The initial three stages of the pipeline were not described in this paper since they wer
carried out by the PPMI, however they are described in detail in the PPMaln i8]

[19 [23].

Mean Countsggyi
SBR = Striatum -1 (2)
Mean Countsoccipital Region

Background Region
[ Target Region
I Reference Region

Fig. 5. A 3D illustration indicating the target and reference regions usedfRrc&lculation.
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4 Results

System accuracy was recorded as 97.01%, with 96.63% sensitivify7 at&6 speci-
ficity, based on a dataset of 268 test observations. Furthermore, the nelicdteithat
97% (172) of the pathological cases and 98% (88) of the healthy caseklerified

as such whereas 3% (6) of the pathological cases and 2% (2) of the basaéthyvere
misclassified.Classifier performance was also investigated based in individual features
alone in order to identify the discriminative power of each featlitee top three dis-
criminative features were found to be the: striatal binding ratio, diagonal andtmaj
minor diameter, as shown in Table Receiver Operating Characteristic (ROC) anal-
yses carried out for each individual feature also confirm that theseftratures are the
ones with the strongest discriminative power. These results also indicate ttaitial
uptake regions differ greatly in shape and intensity between the cantrgathologi-
cal groups.

5  Conclusion
The aim of this project was the 3D analysis of DaTScan data and the classification
between positive and negativeseaof Parkinson’s disease. The presented classifica-

tion system was reported to provide an average accuracy of 97.01%6vd8% sen-
sitivity and 97.78% specificity.

Feconstruction Aftermation Gaussian Image
b : i F.egistration fo Data Cropping
(OSEM) Correction Filtering MNI Space

Carried out by PPMI

e Feature Swrface -
Extfraction Rendering HSegﬂemaﬁon }‘7

Fig. 6. The system pipeline illustrating the processing steps at a high level.

Table 1. Performance results for the top three discriminative features.

Feature Accuracy Sensitivity  Specificity AUC
Striatal Binding Ratio 84.33% 0.87 0.8 0.773
Diagonal 83.58% 0.83 0.84 0.725

Major-to-Minor Diameter 83.21% 0.78 0.94 0.8111
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This compares to the reported 94% sensitivity and 92% specificity foalvigerpre-
tation which is the clinical standarédq. Moreover, it demonstrates an improvement
over the use of 2D features which rendered overall system accut@@$6pés reported
by Prashanth et al2§].

Three main improvements in system performance have been identiéeglimina-
tion of redundancy in the dataset, the use of orthogonal featmlethe addition of
clinical data, such as Hoehn and Yahr ratings.

With the suggested improvements, it is believed that the system would bé&eazpab
serving as an aid for Parkinson’s disease diagnosis by minimising variability and inac-
curate treatment whilst enabling the assessment of disease progresstbar ifiar-
mation about this project can be found 24]
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