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Abstract. Modeling the heart motion has important applications for
diagnosis and intervention. We present a new method for modeling the
deformation of the myocardium in the cardiac cycle. Our approach is
based on manifold learning to build a representation of shape variation
across time. We experiment with various manifold types to identify the
best manifold method, and with real patient data extracted from cine
MRIs. We obtain a representation, common to all subjects, that can
discriminate cardiac cycle phases and heart function types.

1 Introduction

The purpose of this study is to identify the main modes of variation of the
myocardium’s shape during the cardiac cycle. Possible uses of such a model of
heart deformation include assessing heart function for diagnosis making, surgery
planning, and heart motion correction or tracking. In the past, some works have
tracked points at the surface of the heart to account for the heart motion due
to combined heartbeat and breathing movements, e.g. [18]. These methods do
not attempt to understand the heart’s deformation, and therefore may lack of
detail and robustness for other parts of the heart. Other methods have tried
to describe these motions, such as [10] which built a respiration model using
Principal Component Analysis (PCA). We propose a model of heart deformation
due to heartbeat alone, that can be combined to such a respiration model to fully
represent the complexity of heart motion.

Although heart deformation seems to have a high number of degrees of free-
dom, we investigate whether it lies on a lower dimensional manifold. This ap-
proach has been successfully used to encode the shape and the appearance of
both the heart [11] and highly deformable objects such as the human body [3],
with the aim to support tasks such as pose recovery, reconstruction, or tracking.

Heartbeat is a nonlinear process, thus the PCA modeling of [10] may not
be sufficiently flexible to encode it, and a nonlinear manifold approach may
be more suitable. Nonlinear manifolds have been used successfully on similar
tasks in the past. Isomap combined with image distance measures representing
deformations in MR images provided a representation of non-rigid chest cavity
deformation due to breathing [17]. In [11], the authors demonstrated the ability
of Diffusion Map to learn the right ventricle’s shape variations in order to drive
its segmentation. The closest work to our own is that of Gifani et al. [5], who used
Locally Linear Embedding (LLE) on 2D echocardiography images to model the
cardiac cycle of individual subjects and to automatically detect its phase. In this
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work, we also apply nonlinear manifold learning to the modeling of myocardium
shape deformation during the cardiac cycle. However, we aim to build a more
general model that is applicable to a larger population group, and we use 3D
shape information rather than 2D images. To the best of our knowledge, this is
the first study to attempt this general modeling of heart shape’s deformations.
We test and compare several popular manifold types, in order to determine the
best fit to this motion.

In the remainder of this article, we introduce our methodology in Section 2,
where we also present the different manifold types we investigated. We report
and discuss our comparative results in Section 3, and conclude in Section 4.

2 Proposed Approach

We propose to model deformations of the myocardium using manifold learning.
As illustrated in Fig. 1, we use temporal sequences of 3D myocardium shape data,
reconstructed from cardiac cine MRIs. After spatial and temporal normalization,
the deformations of these 3D shapes are encoded in Difference Volumes (DV),
then captured in a manifold. Next, we detail in turn these different steps.

Fig. 1: Overview of proposed modeling of myocardium motion during heartbeat

2.1 Data

We illustrate our discussion using the CONSENSUS-AUTO dataset [7,4] that
was released as part of the Cardiac Atlas Project (CAP). It provides cine cardiac
MR images for 200 patients suffering from myocardial infarction and impaired LV
contraction, with 19 to 30 time-frames per sequence. Semi-automated segmen-
tation labels are also available for the myocardium in all slices and time-frames
of 100 patients. We use these labels to visualize the left ventricle (LV) motion
throughout the cardiac cycle. The MRIs are gated thus the respiratory motion
does not affect the shape of the LV.

2.2 Preprocessing

In order to model the shape deformations of the myocardium, we start by recov-
ering its 3D shape from the 2D segmentations of the MR images. This is done
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using the IReSISD framework, introduced in [12] and [14] to jointly register,
segment, interpolate 3D sparse MR volumes.

The sequences then need to be aligned temporally. Indeed, even though their
acquisitions are ECG gated, we find that the volume curves of the LV blood
pool are not perfectly synchronized (see Fig 2a). To correct this, we smooth
the volume curve of each patient using moving average of 5 frames, then each
sequence is translated rigidly to position their lowest volume frame at the start
(Fig. 2b). This frame corresponds to the end-systole. Upon examination, we find
that the maximum volume frames (end-diastole) are also well aligned by this
method.

Fig. 2: Volume of the LV blood pool across the heart cycle. Note that initial
curves (a) are not well aligned, while curves in (b) have been synchronized.

We then align the subjects spatially to compensate for different acquisi-
tion parameters and patient’s position and morphology. First, we align the my-
ocardium shapes at the end-diastole frame of each sequence using Procrustes
alignment with translation and scaling. The rotation alignment along the LV’s
long axis is more difficult to perform using the LV shape only, because this shape
tends to be quite symmetrical. Therefore, the second alignment step is based on
the original MR images that contain both LV and RV. We use the middle SA
slice of each patient’s first frame, and select manually 14 landmarks around the
right ventricle (RV) plus one in the middle of each ventricle (see Fig. 3). Overall,
we found that the average, median, and maximum corrections to apply in our
dataset are 16.12◦, 13.54◦, and 56.45◦respectively.

2.3 Manifold Construction

We propose to model the deformations of the myocardium during the cardiac
cycle using manifold learning. Heart shapes were found to form a non-linear
manifold, e.g. in [11]. The beating motion of the heart is also complex and non-
linear. Therefore it is reasonable to assume that heart deformations would form
a manifold that is nonlinear. We experimented with a baseline linear PCA and
several nonlinear manifold learning methods, and we will present their compar-
ative results in Section 3.
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Fig. 3: Correction of rotation inconsistency between patients using landmarks
(red crosses) alignment. The illustration here represents a rotation of 29◦.

We build our manifold using deformation information encoded as the differ-
ence between a shape at time t and the shape of the same sequence at time
t0. We call this representation ”Difference Volume” (DV), because it is built by
taking the difference of the two volumes at t and t0. In the DV, 0 values denote
no change, values 1 are parts of the shape in t that appeared with regards to
time t0, and values −1 are parts that disappeared. An illustration is presented
in Fig. 4. This representation has the advantage to preserve all the spatiotem-
poral information on deformation, while keeping the ”shape-like representation”
principle that was successful in previous works on shape manifold learning.

(a) (b)

Fig. 4: We encode the deformation information in a Difference Volume (DV) (a)
that contains values 1 and −1 where the shape in frame t appears or disappears,
respectively, with regards to initial shape at t0. This is illustrated in 2D in (b).

We experimented with a number of manifold learning methods, which we de-
scribe briefly next. Principal Component Analysis (PCA) [6] finds the main
uncorrelated orthogonal modes of variations in the data, to define a new space.
Diffusion Maps [2] attempt to discover a lower-dimensionality space where
distances reflect data similarity. Similarities are estimated as diffusion distances
in the original space and computed by a random walk. We use the variant Ro-
bust Diffusion Map (RDM) presented in [13], that provides extra robustness
to outliers. Isomap [16] uses a neighborhood graph in order to preserve the
pairwise geodesic distances of the underlying manifold. Laplacian eigenmap
[1] also uses a neighborhood graph that may be seen as a discrete approxima-
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tion of the low-dimensional manifold that preserves distances. t-Distributed
Stochastic Neighbor Embedding (tSNE) [8] also takes neighborhood into
account to build a space where similar and dissimilar objects are modeled respec-
tively by nearby and distant points. Locally-Linear Embedding (LLE) [15]
considers a manifold as a serie of overlapping linear patches, under the assump-
tion that, at a small enough scale, the manifold can be approximated as linear.
This method therefore preserves the local properties of the data, and is good at
finding nonconvex manifolds. We used the Isomap and LLE implementations of
the Matlab Toolbox for Dimensionality Reduction [9].

3 Results

In our implementation, the DV introduced in Section 2 has 703,308 dimensions,
which corresponds to the number of voxels in the 3D reconstruction of the my-
ocardium. In this section we investigate which manifold type provides the most
informative representation of LV motion during the cardiac cycle. We build mod-
els for myocardium and LV blood pool.

3.1 Comparison of manifold learning methods

We use all the data to build the manifolds in order to perform a visual exploration
of the quality of dimensionality reduction offered by the different methods. We
visualize in Figs. 5 and 6 the first three dimensions of all tested manifold learning
methods, for the myocardium and LV chamber respectively. Color denotes the
phase of the cardiac cycle, with blue for diastole, red for systole, and color
saturation ranging from 0 at the beginning of the phase to 1 at the end.

The number of dimensions in these figures is chosen for convenience of visu-
alization. The three first dimensions correspond to the main modes of variations
discovered by the methods. Thus, they allow for an easy visual assessment of
the discriminative power of the learned representations. The optimal number of
dimensions for applications that call for a more detailed analysis shall be fur-
ther explored in the future. For example, for classification of two different heart
function types, we might find that three dimensions are enough (although that
is still to be established). However, for a finer characterization of the heart func-
tion, more dimensions are likely to be needed. For our current purpose of initial
visual examination, this drastically reduced dimensionality while still allowing
to distinguish the evolution of the heart deformations in the most successful
representations.

We observe that the PCA and RDM methods produce a better separation
between the two systolic and diastolic cardiac phases (represented in red and
blue respectively) and thus are more suitable for capturing the heart deforma-
tion information. Isomap, Laplacian Eigenmap, and LLE create manifolds made
up of a central cluster and narrow branches. They do not separate well diastole
from systole, and do not seem to provide a meaningful representation of heart-
beat motion. tSNE produces a uniform sphere, which denotes a failure of the
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Fig. 5: Different manifold embedding of myocardium motion during cardiac cycle.
The first three dimensions are visualized only. (a) PCA, (b) RDM, (c) Isomap,
(d) Laplacian Eigenmap, (e) tSNE, (f) LLE. Legend: red and blue colors denote
respectively systole and diastole, with saturation encoding progression of the
phase, from beginning (black) to end (maximum saturation).

method to find a manifold. A possible explanation is that the optimum number
of dimension for the tSNE representation is not three for this problem. In the
rest of the article, we focus on the PCA and RDM manifolds that are identified
as the most promising methods.

When looking at the PCA and RDM manifolds for myocardium and LV
chamber, we notice that they all capture end-systole as a central cluster, while
end-diastole has a larger area that denotes more variability in the heart defor-
mations. This may be explained by the fact that we built the difference volumes
by comparison against the end-systolic frame. Indeed, as can be seen in Fig. 2b,
frame t0 corresponds to the minimum of LV chamber volume.

The main difference between the two RDMmanifolds, is that the end-diastole
points seem more scattered in the myocardium manifold than in the LV chamber
one. This suggests that the modes of deformation of the internal surface of the
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Fig. 6: Different manifold embedding of LV blood pool deformations during car-
diac cycle. The first three dimensions are visualized only. (a) PCA, (b) RDM, (c)
Isomap, (d) Laplacian Eigenmap, (e) tSNE, (f) LLE. Legend: red and blue colors
denote respectively systole and diastole, with saturation encoding progression of
the phase, from beginning (black) to end (maximum saturation).

myocardium, between the end-systolic and end-diastolic frames, is more consis-
tent across subjects than the modes of deformation of the myocardium’s external
surface. We also note that the end-diastole points form two main branches in
the LV chamber manifold, while two more localized clusters are visible in the
myocardium manifold. This may indicate that the myocardium’s internal sur-
face presents a wider range of deformation intensities than its external surface.
The two representations are otherwise of similar level of detail. We may use
the LV chamber manifold when studying the blood pool deformations, and the
myocardium manifold for a study of the myocardium itself.

PCA creates the second best manifold representation, which also identifies
the systolic and diastolic phases. However, it embeds the systole shapes into a
cloud of separate trajectories, in effect assigning regions of the manifold space
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to individual patients. On the other hand, RDM groups similar shapes more
successfully into two main motion modes rather than personal regions.

The two PCA and RDM methods will need to be further assessed in future
works for given applications. Their optimal dimensionality would then need to
be determined for that specific application.

3.2 Effect of data preprocessing on the manifold representation

(a) (b)

Fig. 7: Effect of spatial and temporal normalization in the ability of the manifold
representation to discriminate between phases of the cardiac cycle and cardiac
function of the patients. (a) and (b) are with and without normalization. The
color scheme is as in Figs. 5 and 6.

We compare the manifold created with data that underwent or not the data
preparation steps presented in Section 2.2. As can be seen in Fig. 7a, the systolic
and diastolic phases are less well separated. Also, in Fig. 7b, the manifold seems
to identify two main modes of systole (which we attempt to interpret in Section
3.3), while in Fig. 7a the systole points form a fuzzy cloud. Our explanation for
this effect is that the lack of normalization forces the manifold to also capture
variations due to inconsistent spatial and temporal alignments. As a result, more
dimensions would be needed to represent all relevant modes of variation.

3.3 Assessment of heart function types

We notice, in both RDM manifolds, two preferred modes of variation for the sys-
tole phase, denoted by the two branches or clusters of blue points. The dataset
was made from patients that suffer from myocardial infarction. Thus, we hypoth-
esize that these clusters may denote differences in scars within the myocardium.
Unfortunately, the dataset does not identify patients groups, and this hypothesis
is still to be verified with the help of a cardiologist’s diagnosis. In the future,
we plan to use data from healthy subjects in order to verify that anomalies are
captured by our manifold in the same way as in [13].
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4 Conclusion and Future Work

In this paper, we introduced a new methodology for modeling the temporal
shape deformations of organs, and applied it to the myocardium motion during
the cardiac cycle. We build our model from 4D shape data extracted from cine
MRIs. The shape deformations were encoded in Difference Volumes then used
to build a manifold representation.

We experimented with several popular manifold learning methods, on real
patient data presenting mild to moderate anomalies affecting the beating heart’s
motion. We empirically determined that Robust Diffusion Map is best at encod-
ing the range of shape deformations found across both the cardiac cycle and the
patients’ variable cardiac functions.

Our manifold model may be used in the future to characterize the motion,
such as assessing heart function, including any anomaly type and intensity, for
example by studying trajectories within the manifold space, as in [13]. It may
also have uses in estimating the cardiac cycle phase from 3D shapes and possibly
image volumes. When combined with a model of respiratory movements, this
may be used for motion compensation. These applications will be the subjects
of future works.
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