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Abstract. Lung field segmentation is the first step towards the develop-
ment of any computer aided diagnosis (CAD) system for interstitial lung
diseases (ILD) observed in chest high resolution computed tomography
(HRCT) images. If the segmentation is not done efficiently it will compro-
mise the accuracy of CAD system. In this paper, a deep learning-based
method is proposed to localize several interstitial lung disease patterns
(ILD) in HRCT images without performing lung field segmentation. In
this paper, localization of several ILD patterns is performed in image
slice. The pretrained models of ZF and VGG networks were fine-tuned
in order to localize ILD patterns using Faster R-CNN framework. The
three most difficult ILD patterns consolidation, emphysema, and fibro-
sis have been used for this study and the accuracy of the method has
been evaluated in terms of mean average precision (mAP) and free re-
ceiver operating characteristic (FROC) curve. The model achieved mAP
value of 75% and 83% on ZF and VGG networks, respectively. The re-
sult obtained shows the effectiveness of the method in the localization of
different ILD patterns.

1 Introduction

Interstitial lung diseases, also known as diffused parenchymal lung disease is
a generalized term used to refer to a group of diseases encompassing nearly
200 different pulmonary diseases based on the patterns formed by them in the
lung field. Though the interstitial lung diseases are a heterogeneous group they
show similar clinical manifestations which make the differentiation among
them difficult and also accounts for the greater inter and intra observer vari-
ability. This makes the differential diagnosis difficult even for the experienced
medical experts. The main symptom common to this group is inflammation
of interstitium, which is responsible for providing support to the lungs mi-
croscopic air sacs. If diagnosed early, they can be treated and recovery time
will also be less. HRCT images are considered best imaging tools to study
ILD patterns, due to their high resolution. Most common ILD patterns found
in HRCT images are consolidation, emphysema and fibrosis. Figure. 1 shows
these patterns together with a normal lung image. ILD patterns are generally
considered as a textural aberration in lung tissues. Therefore, the majority of
the earlier works focused on the extraction of feature by using different tech-
niques and then further classification of these extracted features with the help
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Fig. 1: Different type of ILD patterns: (a) normal lung (b) emphysema (c) fibrosis and
(d) consolidation

of different classifiers.
Recently, after the impressive performance of deep learning methods in several
image recognition and classification contests, the researchers have turned their
attention towards deep learning based methods. In [1], some features of CNNs
had been incorporated such as weight sharing among the hidden layers, which
were further totally connected to the output neurons. The network was trained
in a supervised manner using gradient descent. The main task of feature ex-
traction and classification, however, was done by a modified RBM. In [2], a
pre-trained model of AlexNet was used to fine tune the lung data and later in
the classification of lung slices. To fit the architectural design of AlexNet they
have rescaled the input images and artificially generated the three channels
with the help of different Hounsfield unit (HU) windows. In [3], the authors
tried to classify the six ILD patterns by proposing a convolutional neural net-
work. The network design is not very complex with 5 convolutional layers
with the kernel size of 2 × 2 and LeakyRelu is used as an activation function.
The pooling layer size is equal to the size of the final feature maps. In the last,
there are three fully connected layers. The network achieved a performance of
nearly 85.5% in the classification of lung patterns. In [4], the authors proposed
a CNN with only one convolutional layer and three fully connected layers. The
shallow architecture of the network prevented it from taking the full benefit of
the power of deep CNN layers. In all the above mentioned methods, the main
challenge lies in automatic localization of ILD patterns.
In this paper, the three ILD patterns have been localized and classified using
different networks, without doing lung segmentation. The rest of the paper
is organized as follows: In section II, database part has been discussed along
with different network architectures and training methods. In the next section,
the implementation details and results obtained have been discussed in the
context of various relevant metrices. Finally, the paper is concluded with a
conclusion and future work part.

2 MATERIALS AND METHODS

2.1 Database Description

A publicly available database from MedGIFT [5] has been used for this study.
In the preparation of database, initially a raw list of 1266 patients was taken.
Up to now, more than 700 cases were revised and 128 cases were stored in the
database. For the cases where the number of patterns is more than one in the
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same image slice, the patterns are labelled to identify which ROI belongs to
which pattern. Only those patterns were considered by the annotators which
sharply resembles the class considered and ambiguous tissue area has not been
taken into consideration.
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Fig. 2: System block diagram

2.2 Networks used in proposed model

Due to low availability of quality annotated data, instead of training the model
from scratch pre-trained weights of ZF and VGG net have been used and fine-
tuned to fit our data. The architectural design of all these networks is shown
in brief:
ZF Net: The design of the ZF network [6] was inspired by its predecessor
AlexNet [7] to improve the performance of image classification. The network
consists of an input layer, five convolution layers, two fully-connected layers,
and a softmax layer. The input layer of ZF network supports the image size
of 224 × 224. Therefore, we have considered image size of 224 × 224 as well
as 512 × 512 in this paper. In the first convolution layer, ZF net used 96 filters
of size 7 × 7 with decreased stride value as compared to 11 × 11 filter size
of AlexNet. The smaller size 7 × 7 filter is more efficient to fetch fine details
of features compared to big size 11 × 11 filters. The number of filters used in
subsequent convolution layers is 256, 384, 384 and 256. The size of filters in
subsequent layers are 5 × 5, 3 × 3, 3 × 3, 3 × 3. ReLUs have been used for acti-
vation functions, a cross-entropy loss for the error function, and trained using
batch stochastic gradient descent algorithm.
VGG Net: VGG Net [8] was created by Karen Simonyan and Andrew Zisser-
man of the University of Oxford with a basic idea to keep the architectural
design, simple and deeper. The model was runner-up at ILSVRC 2014 with 7.3%
error rate. They have created a bunch of networks with layer weights varying
between 11 to 19. The best result was obtained by 16 weight layers. They have
used a filter size of 3 × 3 throughout all the layers, with stride and pad size
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of 1. The size of a max-pooling layer is also fixed i.e. 2 × 2 with stride 2. The
reasoning behind this decreased filter size is that a stack of 2, 3 × 3 convolu-
tion layers offers an effective receptive field of 5 × 5, a stack of 3 such layers
offers a receptive field of size 7 × 7. The benefit of such design is that here
2 or 3 nonlinear activation layers can be inserted depending on the filter size
instead of just 1 layer. The increased nonlinear activation layers can make the
decision function more discriminative. One more benefit of such design is that
the number of parameters also got reduced with reduced filter size.

2.3 Training of Network

The network was simulated for ZF and VGG Net on FASTER R-CNN frame-
work provided by [9]. This model of FASTER R-CNN is simply an advanced
and more robust version of FAST RCNN [10] by the same author. In this work,
the Region Proposal Network(RPN) and FAST R-CNN both are merged into a
single network by sharing their convolutional features. After finding the region
boundary for an object with the help of region proposal network module, class
score for each region is calculated and then the region having highest score for
that particular object is kept. A lot of smaller changes also has been made to fit
the FASTER-RCNN framework with this database. All these changes are listed
below:
Base Network: Pre-trained weights from ZF, VGG have been used for calcu-
lating region-of-interest (ROI).
Training/Testing: The default end-to-end training and testing scheme is used.
Learning rate starts with .001 and is kept constant throughout the process. The
process is evaluated on 10, 000 iterations.

The proposed model consists of two parts training and testing as shown in
Figure 2. The input images got divided between training and testing images
into separate text files sequentially. In the database, the ROIs have been la-
belled. These ROIs were further divided into patch sizes of 16× 16 and 32× 32.
The image size of 224 × 224 and 512 × 512 have been used in this study. When
the image size is 224 × 224 we have used patch size of only 16 × 16 because
a lesser or greater patch size is either too small to capture the relevant fea-
tures inside a single patch or too big that it will capture irrelevant feature
also. In case of image size 512 × 512, the patch size is 32 × 32. Later on, the
annotated ROIs, training images and pre-trained weights of the network used
were fed into Faster-RCNN framework. After training, the model got updated
weights trained on relevant features. In the testing part, the text file containing
information about testing images has been given as an input. With the help of
Faster-RCNN region proposal network, the number of regions will be gener-
ated for an object. Further, a class score for each region is calculated and the
region having highest score is kept.

2.4 Description of Training and Test Data set

The whole dataset for each pattern has been divided into two. One half is
kept for training and its number has been increased artificially by using image
augmentation techniques such as flip, translation, rotation etc. Testing data is
kept as it is without any augmentation. Table 1. gives the total number of slices
for training and testing purposes of each pattern after augmentation.

After getting the polygon for the ROIs, non-overlapping patches of size
16 × 16 and 32 × 32 have been extracted. The patches with more than 75%
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Table 1: Augmented data obtained after applying data augmentation techniques on
original data.

Pattern Training data without
augmentation

Training data after
augmentation

Testing data
without

augmentation
Consolidation 58 348 58
Emphysema 36 216 35

fibrosis 193 1158 100
Total 287 1722 193

of area lying outside the ROI region were discarded. Figure. 3 shows patch
extraction from annotated CT lung slice. Table 2. gives the total number of
extracted patches for individual pattern used as training data.

Table 2: Total number of extracted patches from ROIs for each pattern

Pattern Total number of
ROIs

# of 16 × 16 patches
for image size

224 × 224

# of 32 × 32 patches
for image size

512 × 512
Consolidation 636 1204 1466
Emphysema 372 1057 1572

fibrosis 1782 8047 10870
Total 2790 10308 13908

3 EXPERIMENTAL SETUP AND RESULTS

3.1 Implementation

The whole setup was trained in linux environment using NVIDIA GTX 1070
6 GB GPU on a system with 16 GB RAM and having corei5 7th genera-
tion @ 3.50GHz processor. For all the networks FASTER R-CNN is used as
a framework. Methods where convolutional networks are not used are coded
in python.

3.2 Performance metrics

Mean Average Precision (mAP): It has been shown to have especially good
discrimination [11]. The mAP for a set of detections is the mean over classes, of
the interpolated AP for each class. Recall is defined as the ratio of true-positive
detection to ground-truth instances, and precision as the ratio of true-positive
detection to all detection. For a single information need, Average Precision is
the average of the precision value obtained for the set of top k documents
existing after each relevant document is retrieved, and this value is then aver-
aged over information needs. That is, if the set of relevant documents for an
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Fig. 3: Patch extraction from ROI. (a) The polygon in the red is the ROI.(b) The non-
overlapping square boxes are the patches. The blue color boxes have been discarded
because more than 75% of their area is outside the ROI region. (c) The cyan color boxes
are the final patches of size 32 × 32. (d) The green color boxes are the final patches of
size 16 × 16

information need qj ∈ Q is {d1,...dmj} and Rjk is the set of ranked retrieval
results from the top result until you get to document dk, then where,

mAP(Q) =
1
|Q|

|Q|
∑
j=1

1
mj

mj

∑
k=1

Precision(Rjk) (1)

P =
Ntp

Ntp + N f p
(2)

R =
Ntp

Ntp + N f n
(3)

where

Ntp - Number of true-positive objects
Ntn - Number of true-negative objects
N f p - Number of false-positive objects
N f n - Number of false-negative objects

Here, first we have calculated precision of the three patterns individually,
by dividing true positives with the total number of detected bounding boxes.
After calculating precision, it has to be averaged for whole class and then
mean is calculated by dividing average precision value with the total number
of classes.

3.3 Quantitative results

Table 3 depicts the quantitative results of different networks with different
patch sizes measured in terms of mAP. The results were calculated for both
image sizes i.e 224 × 224 as well as 512 × 512. Moreover, for image size 224 ×
224 we have considered the patch size of 16 × 16 whereas for image size of
512 × 512 patch size of 32 × 32 has been taken. Here, we can see that the best
mAP value of 83% is obtained with image size of 224 × 224 and patch size
16 × 16 by VGG Net. Moreover, with smaller image size the VGG performs
better than ZF net. This could be attributed to the fact that VGG was origi-
nally designed for image size 224 × 224 and gives a better result if applied to
that size. When image size is 512 × 512 the ZF and VGG give similar results
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which are in the range of 75%. One more interesting point is that the image
size of 224 × 224 with patch size 16 × 16 gives the better result than patch size
of 32 × 32 whereas if the image size is 512 × 512 patch size of 32 × 32 gives a
better result than patch size of 16× 16. This could be due to the fact that when
the image size is small the smaller patch size captures all the relevant features
efficiently whereas the larger patch size includes some irrelevant features also
resulting in overall lower accuracy. With bigger image size the larger patch size
is more suitable to extract the relevant features. Free Receiver Operating Char-

Table 3: Quantitative results of different networks with different patch sizes measured
in terms of mAP.

Image Size Patch Size Network Pattern mAP
10K

512 x 512 32 x 32

ZF 73%consolidation
emphysema

fibrosis

VGG 75%consolidation
emphysema

fibrosis

224 x 224 16 x 16

ZF 75%consolidation
emphysema

fibrosis

VGG 83%consolidation
emphysema

fibrosis

acteristic (FROC) curve analysis is widely used for the performance evaluation
of classification [12, 13]. FROC curve plots the values of sensitivity along the
y-axis and false positive per image along a x-axis. The curve can extend in-
definitely in the right direction but the ordinate remains to unity or less. The
curve shows a non-decreasing nature and tends to converge after some time.
The sensitivity and false positive per image have been calculated for different
threshold values. The threshold values are the class scores of each bounding
box and it lies between 0 to 1. When the threshold is at 0 the sensitivity is at
maximum but the number of false positive per image also get increased. This
is because of increase in the number of bounding boxes taken as ROIs even
for low class scores which often results in false positive. When the threshold
value is increased gradually, the sensitivity value, as well as false positive per
image, also get reduced due to the lower number of bounding boxes. In Fig-
ure 5 FROC plots for selected ILD patterns has been shown for ZF and VGG
networks. Figure 5 (a) is the plot for consolidation. Figure 5 (b) is the plot for
fibrosis. Here, we can see that all the networks are showing the impressive
FROC curve. The sensitivity achieved here is generally 90% by both the net-
works. Overall, we can see that the best plot is observed on fibrosis with high
sensitivity value. This is because of a large number of training data available
in case of fibrosis as compared to other two patterns.
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(a) (b) (c)

(d) (e) (f)

Fig. 4: Segmented output obtained for selected ILD patterns on ZF and VGG net.(a)-(c)
is the output image for consolidation, emphysema and fibrosis, respectively on ZF net.
(d)-(f) is the output for consolidation, emphysema and fibrosis, respectively on VGG
net. The red color box is the original ground truth and green color box represents the
detected bounding box.
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Fig. 5: FROC plot of selected ILD patterns for ZF and VGG networks. (a) is the FROC
plot for consolidation with image size 512 × 512 and patch size 32 × 32 and (b) is the
FROC plot for fibrosis with image size 512 × 512 and patch size 32 × 32 on ZF net and
VGG net.
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3.4 Qualitative results

Figure 4 shows the final output of the proposed model for different ILD pat-
terns. The number of patches has been reduced by applying some threshold
value and finally, all the patches are merged to form one big rectangular box
to compare with ground truth value. Only those patches are merged together
which are overlapping with each other a minimum amount of pixel value in
common and those patches have been discarded whose more than 75% of the
area remains outside the ROI region. Similarly, a rectangular box is drawn
from ROI of ground truth which is shown in red color. There are a number
of false positive cases also. But, most of the false positive happens because
the database itself is partially labeled. Also, if the radiologists contradict each
other for any particular region, they have not drawn any ground truth poly-
gon for that region and it remains unlabeled. Due to the ambiguity in ILD
patterns most of the times this happens which results in the low accuracy. In
all these places the model is bound to give false positives. In general, out of
three chosen patterns, the model is showing best results for fibrosis. This is be-
cause fibrosis has the largest training data as compared to other two patterns.
VGG Net is more accurate as compared to ZF Net due to their lesser filter size
properly adopt feature fully and advanced or deep architectural designs.

4 Conclusions

In this paper, an idea has been proposed to localize and classify the differ-
ent ILD patterns in lung HRCT images. Deep learning based methods such as
CNNs, ZF Net, and VGG Net have been used to train the dataset and Faster-
RCNN have been used to draw bounding boxes around the ILD patterns. Orig-
inally these networks were designed for natural color images which everybody
is familiar with so any normal human being can become an annotator for those
images. But, in case of medical imaging only highly trained individuals can do
the task of annotation and validation. This accounts for the low availability of
quality data. To solve this problem, the concept of transfer learning has been
used and the effectiveness of the method shows that even with low data good
results can be obtained if the network is trained properly. Instead of train-
ing the network from scratch or taking some random weights to the network,
weights from some well known pre-trained networks trained on sufficiently
bigger data size has been taken. The performance can be further improved by
labeling the database fully. The future work includes covering more number
of ILD patterns and increasing the number of patches and training data.
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