
A Voting-Based Encoding Technique for the
Classification of Gleason Score for Prostate

Cancers

Zobia Suhail1, Arif Mahmood2, Liping Wang3, Paul N Malcolm4, and Reyer
Zwiggelaar1

1 Department of Computer Science, Aberystwyth University, Aberystwyth, United
Kingdom

2 School of Computer Science and Software Engineering, University of the Western
Australia, WA, Australia

3 School of Electronics, Electrical Engineering and Computer Science, Queen’s
University Belfast, Belfast, United Kingdom

4 Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United
Kingdom

Abstract. We present a novel approach for classifying the Gleason score
for prostate tumours based on MRI data. Proposed approach uses three
scores: 2, 3 and 4-5 (representing Gleason scores 4 and 5 as one sin-
gle class). Patches are extracted from annotated MRI data for each of
the class. Raw image patches have been used as features, instead of ex-
tracting manual hand-crafted features. Each patch is encoded using a
dictionary and the encoded feature vector is then used for classification.
A voting-based encoding approach is used to transform data from the
image domain to more discriminative class-specific representations. Ini-
tial investigation demonstrated excellent results (Classification Accuracy
equal to 85% and Area Under the ROC Curve (AUC) of 0.932) for 3-class
Gleason score classification for prostate tumours.

1 Background

Prostate cancer is considered to be one of the most common life threatening dis-
ease in old aged men, where 85% of cases are found in the patients after age of 65
years [4]. The survinal rate of patients is strongly influenced by the detection of
cancer at early stage [11,5]. According to a study in the United States, prostate
cancer represents about 1/3 of the newly diagnosed cancer cases and comes in
the top 3 most common types of cancer occuring in men [12]. After prostate
cancer diagnostics, pathologists define the aggressiveness of the cancer by using
Gleason scores. The Gleason score ranges from numbers 1 to 5, where 1 means
almost normal tissues. A higher Gleason score indicates a higher probability that
the cancer will grow and spread. In clinical practice, the sum Gleason score is
also used where the Gleason scores of two cancerous areas are added up (and
as such this ranges between 1 and 10). Classification of Gleason scores based on
the image processing technique can be helpful in clinical practice for improving
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the treatment process and to avoid further patients intervention.
Several methods have been proposed in the past for image-based Gleason score
classification of prostate cancer [2,16]. Fehr et al. [2] used first and second order
texture features for the classification of high (>7) and low (<6) sum Gleason
scores. They used multi-parametric MRI images for feature extraction. By using
machine-learning based classification methods, they reported 93% classification
accuracy for cancers present in both the peripheral and transition zones. Tiwari
et al. [16] proposed a hierarchical machine learning-based classification of sum
Gleason scores, where Gleason score 6 and 7 (3+4) were combined as low grade
class and 7 (4+3) and 8 were combined as high grade. They combined T2-w MR
images with MR spectroscopy images. Using their Semi Supervised Multi Kernel
Graph Embedding strategy they reported areas under the ROC curve equal to
0.84±0.07 for classifying voxels based on high and low grade sum Gleason scores.
Doyle et al. [1] proposed a graph-based morphological and texture features for
the classification of Gleason grade 3 and 4 versus benign epithelium and benign
stroma. They reported classification accuracy of 76.9% for the classification of
Gleason grade 3 and 4. They concluded that texture and graph-based features
were significant in classifying different tissue classes. Tabesh et al. [14] used
several features (color histograms, fractal features, etc.) for classification of the
Gleason grade as high or low grade. By using an independent test set they re-
ported an accuracy of 77.6% for classification of Gleason score as high versus low
grade. In their later work [15], prostate cancer was diagnosed alongwith the Glea-
son score classification into high and low grade. They combined colour, texture
and morphometric features. After feature selection and using several classifiers,
they reported 81% accuracy.
Recently, dictionary based approaches have become popular for solving problems
in various medical images, for example for prostate and breast cancer classifi-
cation and segmentation [8,10,13]. A texton-based approach was used in [8] for
the classification of Gleason score as grade 3 and 4. They used filter responses
for generating a texton dictionary, where a Random Decision Forest (RDF) was
used for clustering. A texton histogram was generated after assigning each pixel
to the closest textons, that were then used as features for a SVM classifier.
In contrast to most of the existing methods which performs two class classifi-
cation, we proposed a novel method for the classification of Gleason scores into
one of the three classes. In order to avoid data in-balance, small patches from
the tumour areas are extracted and used as features for the overall model. Ad-
ditionally, a soft assignment technique is used to generate features for each of
the extracted patches. Initial results reveal excellent performance for the 3-class
classification problem for Gleason scores in prostate cancer.

2 Methodology

In this section, we describe complete framework of the proposed approach for
classification of prostate tumour by Gleason score.
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2.1 Data-Set Preparation

The dataset that has been used in the experiments are segmented prostate cancer
areas within the peripheral zone of T2-w MRI. The dataset is annotated by
expert radiologists from the Norfolk and Norwich University Hospital. For the
initial step the segmented area corresponding to the tumour region in T2-w
MRI has been extracted. The associated classes are defined as Gleason 2, 3,
whereas tumours belonging to Gleason 4 and 5 were combined as one class and
is represented as 4-5 (throughout the paper classes are used as 2, 3 and 4-5).
Four cases were extracted for each of the defined class (i.e. 2, 3 and 4-5). A
sample tumour region extracted can be seen in Figure 1.

(a) (b) (c) (d)

Fig. 1: Extracting the prostate area from T2-w MRI corresponding to the an-
notation: (a) T2-w MRI slice, (b) annotation provided by the radiologist, (c)
the corresponding masked area bounded by the tumour size, (d) the extracted
tumour region from the T2-w MRI.

After extracting the tumour region, patches of size 5×5 were extracted from
each tumour region covering each of the Gleason scores. Only patches completely
within the tumour region were extracted (see Figure 2). The relevant informa-
tion that is being used are the raw image data corresponding to the 5×5 patch
extracted from the tumour area.
The number of cases that were used for the experiments are 4 per each class (2, 3
and 4-5), therefore in total we had 12 cases from different patients. As T2-w MRI
is 3-dimensional data, there can be multiple slices covering tumour. We selected
one slice for each patient, corresponding to the largest tumour area annotation
provided by the radiologist. The largest tumour from multiple annotated regions
was selected so that the maximum number of patches could be extracted from
each patient in order to increase the sample size.
The data is divided into 2-distinct sets; i.e. data used for model generation and
the data that is used for model evaluation. The split has been done at a pa-
tient level (not at the patch level), so that the patient cases that are included in
generating the model are not included for model evaluation. Patches extracted
from 3 cases for each of the Gleason-score classes (2, 3 and 4-5) were selected
as data for model generation, whereas patches belonging to the remaining cases
from each class were used for model evaluation.
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Fig. 2: The process of data extraction from the annotated tumour areas.

2.2 Dictionary Generation

After extracting the patches, the next step is to generate the model that is used
for feature generation. For dictionary generation, K-Means clustering was used,
where the extracted patches from the MRI data were used for model generation.
The initial value of K for applying K-Means clustering was set to be 10 (the
value was selected based on empirical evaluation to get the optimum value of
K). After this step, we obtained 10 clusters for each of the Gleason grades i.e.
2, 3 and 4-5. The final dictionary is the combination of all cluster centroids for
all three classes, resulting the size of final dictionary to be equal to 30. These 30
cluster centroids are then referred to as codewords of the dictionary.

2.3 Voting-Based Encoding

For the model evaluation, we used the cases that are different from those used
in Section 2.2. A Voting-based encoding method was used [9] to encode the
image patch data. A soft-assignment strategy was used, where each image patch
is transformed to a normalized weight vector. The SA-k (Soft-Assignment k)
strategy was used based on the weights of the k-nearest codewords [3], while
encoding the image patch. The normalized weight wi for raw image patch P
corresponding to codeword Ci is then defined as:

wi =
exp(−β ‖P − Ci‖22)∑k
j=1 exp(−β ‖P − Cj‖22)

(1)

where β is set to be equal to 1 based on empirical evaluation. The normalized
weights are computed for all the codewords from the dictionary for each of the
raw image data corresponding to image patch P and then only the k-closest
weights are used as encoded feature. The final encoded feature P̂ is then showed
as:

P̂ = [w1, w2, w3, ...wk] (2)

where k is the total number of closest neighbours that were used for encoding
the image patch P . The value of k is set to be equal to 25 based on experimental
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evaluation. After this encoding, each image data corresponding to the image
patch was represented as a feature vector of length 25.

3 Model Evaluation

In this section, we evaluated the model developed in Section 2.2 using k-length
encoded features (Section. 2.3). As the classification results of the classifier were
influenced by how balanced the data was for each class, we made the data bal-
anced before evaluating the performance of the developed model. In order to
balance the data, we investigated the least number of samples present in any
class. For class 2 the total number of generates samples was 410, therefore, we
select 500 samples from the other two classes, in order to make data balance in
a reasonable way. For experimental evaluation, we used Weka [6], version 3.7.2.
We executed five machine learning classifiers available in Weka namely Neural
Network (NN), Vector Quantization Neural Network (VQNN), K Nearest Neigh-
bour (KNN), Random Forest (RF) and Support Vector Machine (SVM). For NN,
VQNN (In Weka both NN and VQNN are implementated as Fuzzy-rough K-
nearest neighbours classifier that uses the nearest neighbours to construct lower
and upper approximations of decision classes [7]) and KNN classifiers value of k
is set to be equal to 5, whereas for SVM the filter type is set to be as standardize
the training data. The rest of the settings for RF and for other four classifiers are
set to default values in Weka. 10 Fold Cross Validation (FCV) scheme is used for
results evaluation. The classification results using these classifiers can be found
in Table 1. The results are given as Maximum (Max) Classification Accuracy
(CA) ±, Average (Avg) CA, True Positive (TP) rate, False Positive (FP) rate,
Precision, Recall, F-Measure (or F1 score) and Area Under ROC Curve (AUC).

Classifier Max. CA Avg. CA TP Rate FP Rate Precision Recall F-
Measure

AUC

NN 88.65 % 84.68 % 0.847 0.083 84.7 % 84.7 % 0.847 0.932

VQNN 88.65 % 84.68 % 0.847 0.083 84.7 % 84.7 % 0.847 0.93

KNN 89.36 % 84.32 % 0.843 0.085 84.2 % 84.3 % 0.843 0.933

RF 87.94 % 83.40 % 0.834 0.09 83.4 % 83.4 % 0.834 0.936

SVM 82.97 % 80.35 % 0.804 0.105 80.5 % 80.4 % 0.804 0.867

Table 1: Classification results for five different classifiers.

The confusion matrices for all the five classifiers (for the best fold) can be
found in Table 2.

3.1 Results for 2-class Classification

In order to check the validity of the developed model for 2-class classification,
we redesign the defined classes by combining Gleason score 2 and 3 as one class
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Class 2 3 4-5

2 402 2 6

3 0 408 92

4-5 9 107 384

(a)

Class 2 3 4-5

2 402 2 6

3 0 408 92

4-5 9 107 384

(b)

Class 2 3 4-5

2 403 1 6

3 1 406 93

4-5 14 106 380

(c)

Class 2 3 4-5

2 401 1 8

3 2 390 108

4-5 8 107 385

(d)

Class 2 3 4-5

2 384 8 18

3 3 369 128

4-5 23 97 380

(e)

Table 2: Confusion matrices corresponding to all fine classifiers: (a) NN, (b)
VQNN, (c) KNN, (d) RF and (e) SVM.

(Gleason score 2-3) and the second class is same (i.e. 4-5) as we defined for 3-
class classification. The classification results for this 2-class classification is even
improved then those achieved with 3-class classification. Th training is performed
as has been done for 3-class Gleason score, whereas at the model evaluation
step Gleason scores 2 and 3 are merged as one class. An average classification
accuracies of 88%, 87%, 86%, 87% and 82% has been achieved by using NN,
VQNN, KNN, RF and SVM classifiers. The settings of these classifiers are set
to same as that of 3-class Gleason score classification. These initial classification
results shows the validity of the developed model for both 2-class and 3-class
Gleason score classification.

4 Discussion

For the proposed Gleason score classification approach , the model was build on
the training data and composed of cluster centroids for each individual class.
The final features used for the classification were the voting-based encoding for
each of the patches (used as basic input throughout the approach). The initial
classification reveals satisfactory results (best accuracy achieved 85% with AUC
equal to 0.93) for the 3-class classification problem. Some correctly classified
encoded features for the three Gleason score classes can be seen from Figure 3.

As can be seem from Figure 3, the encoded features from each of the classes
2,3 and 4-5 appear to be different from each other in terms of encoding values
for each of the codeword.

4.1 Comparison with Existing Techniques

In this section, we compare the proposed method with the existing approaches
for Gleason score classification for prostate cancer. Most of the existing ap-
proaches for Gleason score classification are based on two class classification.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3: Randomly selected features for all the three Gleason score classes: x-axis
is showing the count of nearest codewords (i.e. 25) and y-axis is showing their
normalized weights. (a) and (b) are showing the encoded features for Gleason
score 2, (c) and (d) representing encoded features for Gleason score 3, whereas
(e) and (f) shows encoded features for Gleason score 4-5. As can be seen from
the encoded features of all the three Gleason score classes, the features are
representing distinct information for each class.
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For example, Tiwari et al. [16] proposed a method of two class classification of
Gelason score for prostate cancer, where they reported AUC=0.84. Similarly,
Tabesh et al. [14] provided a solution for classification of Gleason score into low
and high grade, and reported classification accuracy equal to 77.6%. In contrast
to these works, our proposed method provides three class Gleason-score classifi-
cation. Our method have exhibited an improved classification accuracy of 84.68
% and achieved AUC= 0.932. Thus our proposed method have shown excellent
performance compared to the existing approaches.

4.2 Investigating the Misclassified Instances

From the confusion matrices that have been shown in Table 2, it would be
interested to look at the misclassified instances across all the classifiers. In total
there were 216 misclassified instances for classifiers NN and VQNN, for KNN
misclassified instances were 221, 234 instances were misclassified for the RF
classifier and 277 instances were misclassified by the SVM classifier. We selected
only those misclassified instances that appeared within all five classifiers, which
turns out to be 107. This also shows the different behaviours of the classifiers
to build the decision boundaries that resulted is different misclassified instances
for all classifiers. The distribution of the 107 overlapped misclassified instances
can be found in Table 3.

Class 2 3 4-5

2 - 0 1

3 0 - 53

4-5 6 47 -

Table 3: Overlapped misclassified instances across all five classifiers

In total there are 4 misclassified categories: instances originally belonging to
Gleason score 2 but classified as Gleason score 4-5, instances originally belonging
to Gleason score 3 but classified as Gleason score 4-5, instances that belonging
to Gleason score 4-5 but classified as Gleason Score 2 and the last category
where the instances belonging to Gleason score 4-5 but classified as Gleason
score 3. It should be noted that most of the confusion is between classes 3 and 4-
5 (and vice-versa). Figure 4 (a) is showing a encoded features of the misclassified
instance that originally belongs to Gleason score 2, but because of the similar
distribution of this encoded feature with the features from Gleason score 4-5
(Figure 3 (e) and (f)), this instance is classified as Gleason score 4-5. From
Figure 3 (e) and (f), it can be seen that the overall frequency of initial bins are
high, a similar pattern can be found in Figure 4 (a). The misclassified instance
shown in Figure 4 (c) (Gleason score 4-5 is classified as Gleason score 2), an
instant decrease in the frequencies of the initial bins is a similar pattern to the
encoded features belonging to Gleason score 2 (Figure 3 (a) and (b)). As already
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(a) (b)

(c) (d)

Fig. 4: Misclassified instances: along x-axis the count of nearest codewords (i.e.
25) have been shown and y-axis is representing their normalized weights.(a)
Gleason Score 2 in classified as Gleason Score 4-5, (b) Gleason Score 3 in classified
as Gleason Score 4-5, (c) Gleason Score 4-5 in classified as Gleason Score 2, (d)
Gleason Score 4-5 in classified as Gleason Score 3
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explained, the most of the confusion exists between Gleason scores 3 and 4-5 (
see Table 3), misclassified instances shown in Figure 4 (b) and (d) (Gleason score
3 in classified as Gleason score 4-5 and Gleason score 4-5 is classified as Gleason
score 3) is due to the similar appearance of the encoded features of both classes.

5 Conclusion

In this work, we proposed a novel voting-based encoding approach for Gleason
scores classification of prostate tumours. The classes of Gleason score made under
considerations are 2, 3 and Gleason scores 4 and 5 are taken as single class i.e.
4-5. After generating a dictionary from all the training data, soft assignment was
used to assign each of image patch to the closest code word from the dictionary.
The study proposed a novel way to transform the data from the image domain to
a more discriminative representation. Initial classification reveals a satisfactory
classification accuracy (85%) and AUC (0.932).

6 Future work

The current work is based of the T2-w MRI data for the classification of prostate
cancer tumour aggressiveness. In future we will extend this work to combine the
features from other modalities of MRI images ( Dynamic Contrast Enhanced
(DCE) MRI and Apparent Diffusion Coefficient (ADC) maps) further to im-
prove the classification accuracy. In addition, due to limited size of the data
we combined the Gleason scores 4 and 5 as one class (i.e. 4-5), in future based
on the availability of more data we will perform four class classification (Glea-
son scores 2,3,4 and 5) using the same approach we did for three Gleason score
classification.
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