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Abstract. This paper proposes3D GMRF-based descriptor for volumetric tex-
ture image classification. In our proposed method, the estimated giararof
the GMRF model in volumetric texture images are employed as tdeattges

in addition to the mean @afprocessed image region. The descriptor of the volu-
metric texture is then constructed by computing the histograms loffeature
element to characterize the local texture. The evaluation of this descript
achieves a high classification accuragya 3D synthetic texture database. Our
method is then applied on a clinical dataset to exfodiscriminatory power,
achieving a high classification accurdanyCOPD detection. To demonstrate the
performance of the descriptor, a comparison is carried out agldBsGMRF-
based method using the same dataset, variables, and settindss@iijgtor out-
performs theeD GMRF-based method by a significant margin.
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I ntroduction

In recent years, chronic obstructive pulmonary disease (COPD), veffiick to a group

of progressive lung diseases, has become a serious disease enradjiagjygworld-

wide. According to [1], by 2020 it is projected to rank thimdsignificant causes of
death worldwideDespite important efforts that have been made over the past two dec-
ades, some significant issues have not been addressed including the mecbfnisms
disease and early diagnosis [2]. Therefore, additional research metbauscassary

to develop new solutions and treatments of this disease. Medical imagsisanaing
computer vision techniques can potentially provide robust solutions thairs aligg-
nosis.
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COPD is defined as “a common, preventable, and treatable disease characterized by
persistent respiratory symptoms and airflow limitation that is due to airway and/or al-
veolarabnormalities” [3]. There are many signs and symptoms that can be identified in
patients with COPD. These symptoms inclagdaronic cough, which is often the first
symptom. In addition to this, shortness of breath, wheezing, amgrnsgproduction are
also critical symptoms of this disease [3]. Although these symptomsyate Kiagno-
sis of this disease, automated analysis of COPD has received considerabtshriesear
terest [27,28,29].

The common clinical diagnostic tool for COPD is Spirometry which concems p
forming a Pulmonary Function test (PFT) to measure lung condition [3,4].p0ted
Tomography (CT) is another growing diagnostic tool that is capafbtbagnosing
COPD, providing more information about the type of disease, sej#rand distribu-
tion throughout the lung. This is one of the key advantagiesagfing based approaches
— that they allow us to determine where in the lung the disease is (CO#Dtdelne
very heterogeneous, with some parts of the lung remaining compheiaiyy, whilst
other parts are affected by disease. Spirometry cannot give thisfkirfdranation.

Many methods have been proposed to quantify emphyssoeymon disease clas-
sified under COPD, focused on density histogram as featuresemphysema index
or density mask was among early methods, introduced,imginly ainmed at measur-
ing attenuation values below a certain threshold using consequent informatiea-
tures. Another important quantification method foe diagnosis of this disease was
proposed based on texture features. The popular Local Binary Patté?h rfié@hod
that was originally proposed in [6] was used to extract the feaglwmes/from different
regions of interest (ROIs). The features histogram is therefore computedsed to
classify ROIs [4]. Recently, features extracted by co-occurrence matricaptiore
spatial dependence of gray-level intensities and Gaussian derivative methquar® ca
structural features was proposed to automatically detect emphysema \attad@n-
notation [7]. Moreover, a method of comlrigimultiple features has been reported in
[8] whereas texture and intensity features are integrated to pegfantification of
emphysema in high-resolution computed tomography (HRCT), claimai@tiopting
additional features such as the texture improves the perfornwntte proposed
method.

1.1 Texture-based Features

Texture is an important feature of many types of images suctedisal, natural, and
industrial images. Feature extraction and analysis from textures are inpopias in
image processing and computer vision particularly in medical imzsggsas Recently,
texture analysis problems have been widely studied delivering vadhui®es. These
problems can be generally classified into four main categories: intagsgfication,
image segmentation, image synthesis, and texture-based shajot@ax{®].

In recent years, a wide variety of methods have been fontigsis of texture, one
of which is a model-based method which uses a generative image to refireseage
[10] such as an autoregressive module [11]. Markov rarfdelds (MRF) and its sub-
class Gaussian Markov random fields (GMRF) are examples of model-batsatim
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However, recent advances in medical imaging, which offer three-dinmah$8D) im-
aging, have created issues rethto feature extraction of volumetric images because
applying 2D methods on 3D images result in the loss of importaommation. This
has led to the extension of many 2D texture methods to 3D extended ssticbdas
work in [12,13,14], while some efficient methods still need to be extended ar twd
exploit their capability of handling 3D texture. The excellent performandeeaheth-
ods based GMRF presented in [18,22] inspireousxtend them to deal with textures
in 3D volumetric images to the best of our knowledge; these methodsbt yet been
extended to handle the case of 3D volumetric image data.

1.2 Volumetric Texture

Texture can be defined as a spatial arrangement of the gray valueshbbnigig pixels
[15]. This spatial arrangement of gray values on a surfacerkasvD texture can be
easily observed by human perception. In contrast, 3D texture imageseaeied by
more than two dimensions are impossibléeédully visualized by human perception
[16]. Volumetric texture or solid texture is an example of 3D texture,mibilmdexed

by three coordinates [17]. This paper considiesSvolumetric texture’ represented by
(x,v,z) € R® ina3D coordinate system. This type of texture widely exists in the med-
ical imaging fields representing the internal structure of human organssuhe brain
and lungs. Figure 1 shows an HRCT image of a left lungalisgd the interior structure

of the lung.

Fig. 1. The interior structure of a left lung in an HRCT image.

This paper aims to characterize textures in volumetric images based on théR¥D G
modelto develop a computer-aided utility for automatic RIddiagnosis by extracty
texture-based features from HRCT volumetric images.
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The remainder of this paper is organized as follows: Section 2 introducesthod
and some related issues in detail. In secidghe results of method evaluation are pre-
sented Section 4 compares the application of the method in medical intagesther
method and section 5 concludes the paper and outlines future work.

2 Three-dimensional Gaussian M arkov Random Fields
Model (3D GMRF)

MRFs have been a popular model-based method for texture analysistideie ability
to characterize local spatial information in an image [30]. This methegsothe Mar-
kovian property in which each pixel depends directly on the neigitpixels. GMRF,
a aib-class of MRF, is among the most popular model-based methtekfore classi-
fication [18].

Let O, ={v=(,j,k)|1<i<H1<j<W,1<k<D} denote the set of
voxels indexed byi, j, k) on aH x W x D 3D lattice corresponding to voxels in three-
dimensional image volume. The local conditional probability densitgtion of the
intensity valueg,, at locationv is defined by:

2
1 1
PlgolyrT €V) = —— eXp{ —272<gu —A- Z ar(yr = /1)) } (€))

TeV

whereV are the neighbors of the voxel at locatigny,. are the interaction parame-
ters that measure the influence on a voxehdighbors’ intensity valueg, located at
arelative positiorr [18,19]. The neighborhood scheme adopted here is sampled voxels
over a sphere surface with radRisso thatV € {6,¢|0< 0 < m, 0< ¢ <
2x } and|V| is equivalent to the number of voxdfsgure 2 presents the sampled voxels
over a sphere equivalent to the neighbgprsvhere the center of the sphere corresponds
to g,,, whichis used to collect observations.

Fig. 2. Graphical representation of voxelssampled over a sphere wheggis the
central voxel.
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2.1 Parameter Estimation

The model parameters in equation (1) can be estimated using two cometioods;
the maximum likelihood estimation (MLE) and least squares estimation (L$E). A
hough both methods produce adequate results and lead to the samegsetiofns in
terms of GMRF, MLE has many advantages over L3H. [Further from being fast
and easy to implement, MLE provides an optimal estimation in large sawiplesit
is also consistent in small samples. As a result, MLE is selected for the GMR¥F mod
parameters estimation.

MLE is found by taking the partial derivative atog-likelihood function with re-
spect tar, g, 1 and setting it to zero leads to the following simultaneous equations:

ZA-a)i= ) (g - ) @
_AZYk'FZYk%(Yv—/D: Zg,,yk k Er (3)
07 = ) (g = A= a0~ D)? @)

VEQY

whereZ = HX W x D, a, = row[a,] andy, = col[y,] for r € V .These model
parametersy, 0 and A are calculated by solving simultaneous equationg)(2nd
therefore employed as features ve@ior [, a2, 1] for each voxel site in the volume
to charactedeimage texture and assumed to be constant over a particular voxel site.

2.2 Estimation Cube

In a2D texture image, the GMRF model parameters estimation is carried outiby slid
an X n window over the texture image to collect sample observatidowever, ex-
tracted features from small regions (blocks) is a preferred methoddelaéing with
texture to characterize the local textu2&-{23,31-33]. Therefore, instead of estimating
parameters over the entire image, we follow the idea presented in [22] that@ra
method in which parameter estimation is conducted in a small estimation window
w with w equals t@2n — 1 wheren is the neighborhood size. Thssto ensure enough
samples are provéti to obtain a unique soluticat the parameter estimation stage.

As a resultin volumetric texturewhere there are three dimensiptige region be-
comesa cube leading to an estimation cube instead of an estimation window and the
volume used to generate the observation inside the cube estimation éseasphR
radius andV| sampled voxels. Figu2zpresents the sphere of the observation genera-
tor.
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2.3  Descriptor Construction

The 3D GMRF texture feature consists of estimated parameters, inchadiagce, for
eachvoxel in the sitefl,. The descripto6MRF3? is therefore constructed by compu-

ting the distribution of each estimated parameter in the model to characterize the tex-
ture. In detail, a sphere with radiRsand the number of sampled voxels equdlVtois

slid inside the estimation cube with sizé to generate observation samples. At the
same time, the estimation cube is also slid over the volume to achieve localization.
Next, parameter estimations are carried out at each voxel prodisengf parameters

for each voxel, leadintp afeature vector obtained by:

fo ={a,0%,2} 5)

Distributions of each estimated parametgs? and A are therefore computed pro-
ducing one histogram for each, then the descriptor is constructed tateaating all
histograms. The complete descriptor is gitgn

GMRFI;;,?Q = { H(al)' H((Zz), H((X3), L H(ar)! H(az)! H(A)} (6)

whereH is the histogranof each parameter, superscrifht indicates to 3D volu-
metric texture, whileP, R refer respectively to the sampling rate of voxels placed on
the sphere used for generating observations and its r&djuse 3 shows an illustration
of the proposed methods

GMRF3?% is employed as the descriptor for volumetric texture images and bygsettin
P andR to different values, the descriptor can capture features at different spatial res-
olutions.

. . 2
Volumetric texture image Model parameters ¢, 0, 1}

A
r A\

(I )
R, —— l% ko Jhd

il

Concatenated histograrr One histogram for each parameter
(The descriptor)

Fig. 3. An overview of the proposed method.
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24  Implementation | ssues

The first issue is to solve the simultaneous equaii@n$). These equations are non-
linear with respecto 1. Such nonlinear equations are numerically more expensive to
solve and may also suffer from instability; solving equation)(Erply dealing with
nonlinear systenilo avoid nonlinearity, we estimate the melaseparately by calcu-
lating A and subtractingt from the observation spacg, and then including it as a
feature together with model parameters , the final solution leads to :

-1
a, = 2 YoV Z VoG @)

VEQY VEQY

1
0-1;2 = |Qv| Z (gv - avyv)z (8)

VEQ,,

The size of th&sMRF3% descriptor depends on the number of voxel samples on the
sphere and the histogram bins setting for each parariéeesize is given as follows:

|GMREZR| = (V] +2) b 9

Where|V| is the number of voxels, whileis the number of histogram bins and the
additional values refer to the variance parameteand the mead.

Another issue is encountered during the stage of parameter estimatiecialysp
when inverting the parameters matrix causimgpn-invertibility issue. The non-invert-
ibility issue occurs when the observations matrix has no inversiharefore becomes
a singular matrix where no solution exists, leading to an inconsisteral . modover-
come this issue, we must ensure that the observation matrix is notesiagd invert-
ible. This can be achieved using various methods and one possible diremical
solution is to use ridge regression by adding a regularization to the obsenatitix
in away that will make it non-singular and invertible [24,25]. The intégsagarame-
tersa asa result are given by:

-1
a, = Z Yo¥s +c?l Z VoG (10)

VEQyY VEQY

wherel is the identity matrix with a size equal to the size of the observation matrix
andc is a constant number to control the strength of regularization. This isatided
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to the diagonal of thg,y! observation matrix before the inversion operation to make
the matrix non-singular.

The selection of the valueis not straightforward; we empirically choose the value
that maximizes the accuracy of the classification.

3 Results and Discussion

In this section we aim to evaluate our descriptor through perforagtasgsification on
volumetric textures; we consider classification accuracies and the confusionasatrix
classification measures for our descriptor.

31 Dataset

We evaluated our descriptor on a dataset for volumetric texture, or solid textare as
ferred by the creator ir2p]. This dataseit constructed usingtwo-dimensional dataset

such as Brodatz textures and fractal textures. One of the methodyednolgenerate

this dataset interpolestwo or more two-dimensional texture images to construct vol-
umetric texture used in our evaluation. The dataset generated by the interpolation
method contains 30 different classes composed of ten volumetricsnesagé corre-
sponding to 64 two-dimensional texture images waiice of 64x64. We developed a
simple program that easily constructs the volumetric texture at siz€igdre 4 shows

an example of volumetric texture from selected classes.

L

Fig. 4. Example of volumetric texture fromsolid textures dataset [26] built using the
interpolation method.

3.2  Evaluation Methods and Parameter Settings

First, it is important to set related variables to the desired values. Consideriiggthe s
of the neighborhood, it is controlled By + 1 , with spatial resolutiom = 1. This
radius covers space of size®¥oxels. The number of voxels sampled over the sphere
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depends on the number of equally-spaced points arrang@édodg , as we sep =

16, the total number of voxels is obtained [}| = p?/2. The size of the estimation
cube is selected to be = 5. Regarding the histogram, the number of bins is empiri-
cally selected to give the best result. The number of features, medltylthe number

of histogram bins, gives the size of the descriptor (see forrmula 9

The descriptor is therefore constructed as described in section 2.3 and illustrated
Figure 3.

Classification is performed usirignearest-neighborBNN ( k = 1) with the dis-
tance metric L1-norm. The accuracy of the classification is obtained bipyngpa
leave-one-out scheme then the mean of accuracies over all itasseputed.

Table 1 shows classification accuracies for the descriptor obtained by performing
GMRF3? andGMRF:2, with adifferent number of sampling equivalentpo= {8,16}.

The descriptor successfully classifies 98% of classaesahpling ratef p = 16 while

it produces an acceptable performance using only a samplinof gate 8, achieving
an accuracy of 96%.

Table 1. Classification accuracies [%)] f@d\/IRF}?_’,%descriptor.

Number of Histogram bins
5 10 20 30 50 65 100

{r=1, p=8} 88.0 926 957 95.0 96.0 96.0 953
{r=1, p=16} 913 953 97.0 97.3 97.3 98.0 98.0

GMRF3?

4  COPD Detection Using the Proposed 3D GM RF-based
Method

We exploied our descriptolGMRF3% to detect COPD in given patients. The clinical
dataset employed in this comparison is a set of full-lung HRCT volunivetiges com-
posed of 32 subjects where 19 subjects are healthy and 13suigee diagnosed with
COPD. We extract volumes of interest (VOIs) from the HRCT imagésngs (see
Figure 5) and the same process of our method described previaslyawied out.
The descriptoGMRF32correctly classified 90.62% of subjects in the clinical dataset
demonstrating that the GRF is an efficient approach for texture characterization.

Fig. 5. VOIs sample taken from HRCT images of lungs in the clinical database.
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To demonstrate the performance of our descrigfdRF3% for detecting COPD in
HRCT, we compared it againe2D GMRF-based method called local parameter his-
togram (LPH) presented in [22]. To make this comparison fair,sed the same VQO|Is
parameters, and settings for both methods. We se8 andr = 1 while the estimation
window dimension was set to = 5. Concerning histogram bins, we selected the num-
ber of histogram bins that scored the best accuracy. Regardinghd”iethods ap-
plied to each 2D slice in the VOI and the best classification seayag all these slices
was selected.

Table 2 and Table 3 show, respectively, the classification accuracies angiaonf
matrices of the two compared descriptors which clearly demonstrate thaisotiptbr
outperformed the 2D GMRF-based LPH method in detecting COPD in HRE&Jes.
Despite the high computation time of our 3D GMRF-based method, the @utwfom
this comparison gives a cue that characterizing texture in 3D imagadgsanore
useful information compad with 2D images, which could contribute in the discrimi-
natory power of extended 3D descriptors.

Table 2. Classification accuracies [%] fGMRFZ%and LPH.

Method Accuracy [%]
GMRF3% 90.62
LPH 75.00

Table 3. Confusion matrix foGMRF3Rand LPH.

GMRFSR LPH
Normal Abnormal Normal Abnormal
Normal 17 2 Normal 11 8
Abnormal 1 12 Abnormal 0 13

5 Conclusion and Future Work

This paper proposes an extensioradD GMRF method to characterize textures in
volumetric images. The method proposed here demonstrates excell@enmperde,
achieving high classification accuracies when classifying a dataset of volumetric tex-
ture images. The discriminatory power of the descriptor is exploited tot da@#eD
using a clinical dataset. Our method shows a higher performance imgsompwith
the2D GMRF-based method, using the same settings and criteria for theadibibds.

An extension of this method #orotationally invariant descriptor is our future plan
to increase the discriminatory power in random rotated volumetric éssxtur addition
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to this, developing this method for segmentation purpose and redbeirfigature di-
mension and time computation are also considered in our future work.
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