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Abstract. Multilevel principal components analysis (mPCA) has previously been shown to pro-
vide a simple and straightforward method of forming point distribution models that can be used 
in (active) shape models. Here we extend the mPCA approach to model image texture as well as 
shape. As a test case, we consider a set of (2D frontal) facial images from a group of 80 Finnish 
subjects (34 male; 46 female) with two different facial expressions (smiling and neutral) per 
subject. Shape (in terms of landmark points) and image texture are considered separately in this 
initial analysis. Three-level models are constructed that contain levels for biological sex, “within-
subject” variation (i.e., facial expression), and “between-subject” variation (i.e., all other sources 
of variation). By considering eigenvalues, we find that the order of importance as sources of 
variation for facial shape is: facial expression (47.5%), between-subject variations (45.1%), and 
then biological sex (7.4%). By contrast, the order for image texture is: between-subject variations 
(55.5%), facial expression (37.1%), and then biological sex (7.4%). The major modes for the 
facial expression level of the mPCA models clearly reflect changes in increased mouth size and 
increased prominence of cheeks during smiling for both shape and texture. Even subtle effects 
such as changes to eyes and nose shape during smile are seen clearly. The major mode for the 
biological sex level of the mPCA models similarly relates clearly to changes between male and 
female. Model fits yield “scores” for each principal component that show strong clustering for 
both shape and texture by biological sex and facial expression at appropriate levels of the model. 
We conclude that mPCA correctly decomposes sources of variation due to biological sex and 
facial expression (etc.) and that it provides a reliable method of forming models of both shape 
and image texture. 

Keywords: multilevel principal components analysis; shape and image texture; biological sex; 
facial expression 
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1 Introduction 

Populations of subjects or images used in medical imaging often contain natu-
rally occurring groups or clusters [1], e.g., by: manual mark-ups of the same set 
of images by different image experts (each subject forms its own cluster); eth-
nicity, biological sex, or age (etc.); multiple images or shapes from the same 
subjects (each subject again forms its own cluster) such as time series of im-
ages. One approach to dealing with such effects is effectively to ignore them; 
one analyzes all subjects or images irrespective of any naturally occurring 
groupings in the data. However, important effects might be omitted by this ap-
proach. If any such factors (e.g., by ethnicity, biological sex, or age) are mod-
elled implicitly then we cannot ensure that these factor have not become “mixed 
together.” Another approach is to analyze results from each group separately. 
However, in this case it might be hard (if not impossible) to extrapolate the 
results for one group or cluster to another (perhaps new) group. Also, this ap-
proach is not statistically efficient because one is not using all of the data in a 
single model. Multilevel statistical methods [1] present a third way of dealing 
with such effects by modelling both the differences between groups and differ-
ences within groups separately at different levels of the model.  

Multilevel principal components analysis (mPCA) has previously been shown 
[2-5] to provide a simple and straightforward method of forming point distri-
bution models, which are of use in active shape models (ASMs) [6-10]. One 
such previous application of mPCA in ASMs related to the segmentation of the 
human spine [2]. The authors stated that their results showed that “such a mod-
elization offers more flexibility and allows deformations that classical statisti-
cal models can simply not generate.” They also noted that “the idea is to de-
compose the data into a within-individual and a between-individual compo-
nent.” This is an important point: we have shown that mPCA analysis [4,5] of 
landmark points relating to 3D facial shape obtained from Konica Minolta 
Vivid laser cameras allows us to determine the relative importance of biological 
sex, ethnicity, in facial shape by examination of eigenvalues. Modes of varia-
tion made sense because changes in shape were seen to correspond to biological 
sex and ethnicity at the correct levels of the model and no “mixing” of these 
effects was observed [4,5]. Principal component “scores” also showed strong 
clustering, which were again at the correct levels of the mPCA model. These 
results have great implication to the analysis and modelling (and detection in 
some cases) of subtle effects on facial and cranial shape such as orthognathic 
surgery, age, fetal alcohol syndrome, and Treacher Collins syndrome, (etc.).  

Here we extend the mPCA approach to model “image texture” as well as shape 
based on landmark points. By “image texture” we mean the pattern of intensi-
ties (or colors) across an image (or image patch) as in active appearance models 
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(AAMs) [11-16]. As a test case, we consider a set of (frontal) facial images 
from a group of 80 Finnish subjects (34 male; 46 female) each for two different 
facial expressions (smiling and neutral). A three-level model illustrated by Fig. 
1 is constructed that contains biological sex, facial expression, and “between-
subject variation” at different levels of the model. We find the mPCA model 
provides sensible results for both shape and image texture. We are able to an-
swer the question “what’s in a smile?” We then present our conclusions. 

 

Fig. 1. Flowchart illustrating the multilevel model of facial shape 

2  Methods 

2.1  Multilevel Principal Components Analysis 

Active shape models (ASMs) have previously been discussed extensively else-
where [6-10]. However, it is worth noting that shapes are represented as vectors 

containing the components for a set of landmark points,iz , after scaling, cen-

tering, and rotation (see below for details of preprocessing). Multilevel princi-
pal components analysis (mPCA) models variation in the sets of points due to 
different influences at the various levels of the model and separate covariance 
matrices are formed at each level. The implementation of mPCA to describe 
point distribution models used in ASMs is discussed in Refs. [2-5] and the in-
terested reader is referred to these articles for more details about mathematical 
formalism. However, we note also here that one firstly carries out principal 
components analysis with respect to the covariance matrices at each level sep-
arately. This process allows us to isolate specific sources of variation in the 
point sets, which is encapsulated by the principal components at each level of 
the model. The eigenvalues tell us how much variation in the point sets is cap-
tured by each principal component: the larger the eigenvalue, the more im-
portant it is. Hence, eigenvalue plots yield direct quantitative evidence as to 
what the important factors are that affect facial shape. The lth eigenvalue at level 
1 (biological sex: male or female) is denoted by 1

l  with associated eigenvector 
1
lu , whereas the lth eigenvalue at level 2 (between-subject variation) is denoted 

Level 1 • Variation due to biological sex

Level 2

• Between-subject variation, i.e., all 
other variations that are not dependent 
on either sex or facial expression

Level 3
• Within-subject variation, i.e., 

due to facial expression here: 
smiling or neutral
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by 2
l  with associated eigenvector is denoted by 2

lu . Finally, the lth eigenvalue 

at level 3 (within-subject variation) of the model is denoted 3
l  and its eigen-

vector is denoted by 3
lu .  

The maximum rank of a covariance matrix, which gives the maximum number 
of non-zero eigenvalues, is equal to n – 1, where n is the number of subjects or 
the number of groups at a given level for mPCA. Due to the homogeneity of 
the population (i.e., all Finnish and all 46 years old), the rank of the covariance 
matrix at level 1 of the models presented here is given exactly by one because 
it is evaluated with respect to only two groups only (male and female). Clearly, 
any restriction on the rank of the covariance matrix is a limitation of the mPCA 
model, although other multilevel methods (such as multilevel Bayesian ap-
proaches) ought not to be as strongly constrained as mPCA. An exploration of 
these topics will form the contents of future research. 

We rank all of the eigenvalues into descending order at each level of the model 
separately, and then we retain the first l1, l2 and l3 eigenvectors of largest mag-
nitude for the three levels, respectively. Any new shape is now modelled by  
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where z  is the “grand mean.” The mPCA model is fitted to a shape by using 
all three levels in the model at the same time, which is achieved by finding the 
sets of weights }{},{},{ 321

lll aaa  via a global optimization procedure in MATLAB 

R2017 with respect to an overall cost / distance function between the new shape 
and the model of Eq. (1). These weights are also referred to as component 
“scores” here. Inspection of point-to-point errors suggests that the correct solu-
tion is identified, as errors tend to zero as the number of components / modes 
at each level is increased [3-5]. The component scores may finally be standard-
ized to give “standard scores” by dividing the scores for each subject with re-
spect each principal component by its standard deviation (i.e., the square root 
of its eigenvalue: }/{},/{},/{ 331211

llllll aaa  ) such that all scores can be plot-

ted on the same (standardized) scale. The extension to image texture [11-16] 

was carried out straightforwardly. The vector iz  contained the grayscale values 

of 7339 pixels and the three-level mPCA model was constructed in exactly the 
same manner as for the analysis of shape. All calculations were carried out by 
using MATLAB R2017.  
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2.2 Image Capture, Preprocessing, and Subject Characteristics 

Photographic images of the 80 adult Finnish subjects (34 female; 46 male) were 
obtained. Patients were from the Northern Finland Birth Cohort NFBC-66 and 
all patients were 46 years old when the images were collected. Ethical approval 
for this study was given by the Hospital District of Oulu Central Hospital. Im-
ages were captured at various distances from the lens and a small amount of 
variation in both head tilt and in illumination was present. As in previous stud-
ies [3-5], twenty one reliable facial landmarks1 shown in Fig. 2 were found 
manually and these points are used here in the analysis of shape.  

 

Fig. 2. Illustration of preprocessing for photographic images of one of the authors 
(DJJF). (Top Left) Neutral facial expression; (Top Right) Smiling facial expression; 
(Bottom) images corrected for head tilt and overall illumination, and image texture re-
gion of interest (ROI) was defined. 

The outline of the face was found also by placement of thirteen regularly spaced 
points. Color images were transformed into 16-bit grayscale images (Corel-
Draw X5). The extension to colour images is straightforward, e.g., by having a 

                                                           
1   (1) Glabella (g); (2) Nasion (n); (3) Endocanthion left (enl); (4) Endocanthion right (enr); (5) 

Exocanthion left (exl); (6) Exocanthion right (exr); (7) Palpebrale superius left (psl); (8) Pal-
pebrale superius right ( psr); (9) Palpebrale inferius left ( pil); (10) Palpebrale inferius right 
(pir); (11) Pronasale (prn); (12) Subnasale (sn); (13) Alare left (all); (14) Alare right (alr); (15) 
Labiale superius (ls); (16) Crista philtri left (cphl); (17) Crista philtri right (cphr); (18) Labiale 
inferius (li); (19) Cheilion left (chl); (20) Cheilion right (chr); (21) Pogonion (pg).  
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vector, z, that is three times larger to represent the different RGB channels. In 
this initial study, we concentrate on gray-scale images only. The centerline of 
the face was identified from the set of landmark points, and this information 
was to rotate the shapes in order to correct for head tilt, shown in Fig. 2. These 
shapes were also scaled by the average distance to the centroid in order to cor-
rect for distance from the lens during image capture (length scales for the land-
mark points from the centroid of each shape were therefore of order 1) and these 
sets of points were finally translated so that their centroid was congruent with 
the origin. These shapes were then analyzed by using mPCA, as described 
above. A region of interest (ROI) / image patch based on the outline of the face 
using the thirteen landmark points was formed after rotation of the image data, 
again in order to correct for head tilt. All images were scaled in x- and y-direc-
tions independently such that the image size was 86×100 and the ROI (of total 
size 7339 pixels) was selected for each image, as illustrated by Fig. 2. Images 
were finally corrected for differences overall illumination level, also as illus-
trated by Fig. 2. Again, the analysis of image texture via mPCA was carried out 
separately to the analysis of shape in this initial study.  

3 Results 

  
Fig. 3. Eigenvalues from mPCA level 1 (biological sex), level 2 (between-subject var-
iation), and level 3 (within-subject variation: facial expression). (Left) shape data; 
(Right) image texture data. (All shapes have been scaled so that the average point-to-
centroid distance is of order 1.) 

Eigenvalues for both shape and also image texture via mPCA are shown in Fig. 
3. These results for mPCA demonstrated a single non-zero eigenvalue for the 
level 1 (biological sex), which indicates that all of the variation in shape and 
image texture due to sex can be reduced to a single component (mode). A single 
large eigenvalue for the level 3 (facial expression) is evident for shape and also 
for image texture, although many non-zero (albeit of much smaller magnitude) 
eigenvalues are seen for image texture. These results suggest also that variation 
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in shape and image texture due to facial expression (smiling or neutral) is dom-
inated by a single component / mode. Finally, the level 2 (between subjects) 
variation tends to have the largest number of non-zero eigenvalues for both 
shape and image texture. However, we see the first two eigenvalues for image 
texture are (relatively) large. mPCA results suggest that biological sex seems 
to contribute about 7.4% of variation relating to shape and image texture, 
whereas facial expression accounts for about 47.5% of variation of shape but 
only 37.1% variation of image texture. (Percentages were found by dividing the 
sum of eigenvalues at a given level by the sum over all levels; a similar ap-
proach was used in Ref. [17] to explain within-cluster variability.) 

 

 

Fig. 4. Shape Variation: first mode of variation / principal components for mPCA at 
levels 1 and 3. (All shapes have been scaled so that the average point-to-centroid dis-
tance is of order 1.) 
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Modes of variation for shape via mPCA are presented in Fig. 4. We see that the 
first mode at level 3 (facial expression) for mPCA does indeed capture changes 
in facial expression (i.e., neutral to smiling and vice versa). Strong changes in 
mouth shape can be seen that relate clearly to the act of smiling. However, even 
subtle effects such as a slight increase in the width of the nose and narrowing 
of the eyes are also seen to occur during smiling for this mode of variation. We 
see that the eyes become further apart (relatively) and that the mouth becomes 
larger for the first mode at level 1 (biological sex) for mPCA. As all shapes 
have been scaled so that the average point-to-centroid distance is of order 1, 
this result makes sense because it has been seen previously (see, e.g., Refs. 
[5,18,19]) that women have a generally shorter and rounder faces than men. 
Finally, the first mode at level 2 (between-subject variation) for mPCA (not 
shown here) seems to correspond also to changes in the relative thinness / width 
of the face, which presumably can occur irrespective of sex. 

 

Fig. 5. Image texture: first mode of variation / principal components for mPCA. 
(Top row) level 1 (biological sex); (Middle row) level 2 (between-subjects var-
iation); (Bottom row) level 3 (facial expression). (Left column) mean – SD; 
(Middle column) mean; (Right column) mean + SD. 

Modes of variation for image texture via mPCA are presented in Fig. 5. We see 
that mode 1 for level 1 (biological sex) mPCA does indeed correspond to 
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changes in appearance due to biological sex (e.g., as seen also in Ref. [19]: 
“females tend to have more prominent eyes and cheeks”), as required. Mode 1 
for level 3 (facial expression) mPCA corresponds to changes due to the act of 
smiling (i.e., mean – SD = not smiling, mean = half smile, and mean + SD = 
full smile). We see clear evidence of a smile that exposes the teeth in this mode. 
Furthermore, subtle effects are again also seen for mPCA at this level such as: 
increased prominence of the cheeks; increased nose width; and, narrowing of 
the eyes. We note that there is no obvious evidence of changes due to change 
of facial expression or biological sex in modes at level 2 of the mPCA model, 
as expected. Mode 1 at level 2 of the mPCA model appears to account for re-
sidual changes in illumination, whereas modes 2 and 3 at level 2 (not show 
here) appear to account for small residual changes in facial position and appear-
ance that is probably due to some subjects not facing directly not into the cam-
era. 

      

 

Fig. 6. Standardized component scores with respect to shape for levels 1 and 3 
for mPCA (l1 = 1, l2 = 26; l3 = 3). 
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Results for the standardized component “scores” for mPCA for shape are shown 
in Fig. 6. (Note that no constraints are placed on these coefficients in this case.) 
We see that the centroids in Fig. 6 at level 1 (biological sex) mPCA are strongly 
separated by biological sex, although not by facial expression. Hence, strong 
clustering by biological sex (alone) is observed for shape at level 1 (biological 
sex) mPCA, as required. By contrast, we see that the centroids in Fig. 5 at level 
3 (facial expression) mPCA are strongly separated by facial expression (neutral, 
smiling), although not by biological sex. Hence, strong clustering by facial ex-
pression (alone) is observed at level 3 (facial expression) mPCA, also as re-
quired. Note that no strong clustering by facial expression or biological sex is 
seen at level 2 (between-subject variation) mPCA (not shown here), also as re-
quired. Very similar results were observed also for image texture, i.e., strong 
clustering by biological sex or facial expression (neutral or smiling) at the cor-
rect levels of the model. 

4 Conclusions 

Here we considered a set of (2D frontal) photographic facial images from a 
group of 80 Finnish subjects (34 male; 46 female) with two different facial ex-
pressions (smiling and neutral) per subject. A three-level mPCA model was 
constructed that included variation due to biological sex, between-subject var-
iation (i.e., all other variations that are not dependent on sex or facial expres-
sion), and within-subject variations (i.e., facial expression: neutral and smiling) 
at different levels of the model. The major modes of variation for the facial 
expression level of the mPCA model clearly reflected changes in mouth, chin, 
nose, and eye shape and texture during smiling. Strong changes in mouth, ex-
posure of teeth, and increased prominence of the cheeks in terms of shape and 
image texture were seen clearly. However, even very subtle effects as a result 
of the act of smiling were observed such as a slight flattening or widening of 
the nose (shape) and narrowing of the eyes. Facial expression explained 47.5% 
of variation of shape in our dataset and it explained 37.1% of variation of image 
texture. mPCA has thereby allowed us to answer the question: “what’s in a 
smile?” Similarly, the major mode for the biological sex level via mPCA gave 
results that made sense, e.g., it showed clearly that males have longer / thinner 
faces on average than women [5]. Model fits yielded “standardized scores” for 
each principal component / mode of variation that show strong clustering for 
both shape and texture by biological sex and facial expression at appropriate 
levels of the model. We conclude that mPCA correctly decomposes sources of 
variation due to biological sex and facial expression (etc.). This study has there-
fore been an excellent initial test of the usefulness of mPCA in terms of mod-
elling either shape or image texture.  
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The complexity of the modelling scenario can be extended in two ways: e.g., 
by adding in more groups at a given level; or, by adding in further levels to the 
model. Both of these are straightforward to incorporate into the mPCA model. 
An example of adding more groups is given in Ref. [3] where mouth expres-
sions (smiling, sad, and neutral) were explored for Monte Carlo simulated data 
that was analysed using mPCA at the “expression” level of this model. A sim-
ilar extension to other facial expressions for the dataset considered in this paper 
would be achieved by allowing more than two groups at level 3 of the models 
for shape and image texture. An example of requiring more levels is presented 
in Ref. [5], where ethnicity for four groups (English, Welsh, Finnish, and Cro-
atian) is included at a separate level of the model because this is completely 
distinct to variations due to, say, biological sex. Further studies will concentrate 
on correlating and modelling facial shape and texture to other variations such 
as body-mass index, age, and genetic profiles, although this lies beyond the 
scope of this initial study. 

Clearly, the extension of the mPCA method to AAMs (e.g., of the type dis-
cussed in Refs. [11-16]) is readily achievable now that image texture has been 
shown to be tractable via this approach in these initial studies. Indeed, it is 
worth noting that linear discriminant analysis (LDA) has been applied to mod-
elling facial appearance previously (see, e.g., Refs. [11,13,20,21]), and this ap-
proach is similar in spirit to mPCA in that it creates a distinction between- and 
within-group effects. In particular, LDA was used in Ref. [11] to “isolate the 
changes in appearance due to different sources of variability (person, expres-
sion, pose, lighting).” A strength of the mPCA approach, in particular, is that it 
allows us to design bespoke multilevel models that isolate specific factors that 
might affect the shapes or images. We can then judge if these effects are im-
portant or not quantitatively by inspecting eigenvalues. A model can thereby be 
created that can adjust or account for (confounding) factors such as subject age, 
gender, ethnicity, or (in principle) even time for video data. This approach 
might yield much insight in future into applications of facial morphometrics 
where (often subtle) changes that can occur in facial and cranial shape due to 
orthognathic surgery, sex, ethnicity, age, fetal alcohol syndrome, Treacher Col-
lins syndrome, (etc.).  
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